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Abstract— Extracellular action potentials (EAPs) must be
classified before they can yield any useful information on
neuronal function and organization. Neuronal source classifi-
cation therefore represents a critical step in the analysis of
electrophysiological data. This study demonstrates the efficacy
of a multi-sensor EAP classification scheme using source lo-
cation as a classification feature. Localization was performed
using the multiple signal classification (MUSIC) algorithm.
Six distinct source neurons were classified from 20 seconds
of extracellular, four-sensor (tetrode) recordings. On average,
89.5% of the waveforms making up each class matched the
shape of the average class waveform. These results indicate that
this classification scheme can successfully identify individual
neurons from multi-sensor EAP recordings.

I. INTRODUCTION

Extracellular recording is one of the most commonly used
techniques for studying neural activity in vivo [1]. Its main
advantage is allowing action potentials (APs) to be recorded
and resolved for multiple neurons simultaneously [2]. The
advent of multi-sensor extracellular recording has made this
process easier and more effective [3]. However, in order to
determine functional relationships and neural interactions,
the recorded APs must be classified. Many techniques have
been proposed for this purpose, ranging from principal
component analysis (PCA) [4], to expectation-maximization
based clustering [5].

Although these methods differ in their actual classification
algorithms, the defining feature that sets most classification
schemes apart is their feature selection algorithm. Choosing
the correct feature largely determines the efficacy of extracel-
lular action potential (EAP) classification. While commonly
used abstract mathematical features, such as the principal
components in PCA [6], or various template scores [7], can
be used for classification purposes, their calculated features
may not be unique to single neurons, and may change
significantly with sensor location and across trials. Features
that can reliably represent a single neuron, as well as remain
invariant across trials and sensor positions are preferable for
classification purposes.

One such classification feature, previously explored by
Chelaru and Jog in the context of tetrode recordings [8], is
neuron location. Source location is a superior classification
feature to mathematical abstractions for several reasons. First
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of all, source location remains constant even if the recording
sensors are moved with respect to the neurons of interest.
This can account for unexpected movements, which are a
common occurrence during extracellular recording experi-
ments. Secondly, source location can be used to identify and
follow single neurons across trials. In chronic recordings,
where neuron populations may migrate with time, this can
provide both information on neural migration trends and
allow for the migrating neurons to be classified accurately,
and grouped consistently across many consecutive trials.
Note also that localization does not require spike alignment,
as location features are extracted independently for each
recorded EAP.

The localization approach taken by Chelaru and Jog ap-
plies a simplified monopole-like model to the recordings
and proceeds to estimate the source location by solving a
nonlinear system of equations. In contrast to this numerical
solution, our previous work showed that the monopole-
model could be inverted exactly, resulting in a closed-form
solution [9]. Unfortunately, this method is very sensitive to
noise. Likewise, solutions come in pairs, one of which is
spurious. Identifying which solution is the accurate one can
be tedious and sometimes impossible.

Due to these limitations we explored a different local-
ization method rooted in statistical signal processing [10].
The multiple signal classification (MUSIC) algorithm used in
this study has proven effective in both electroencephalogram
(EEG) and magnetoencephalogram (MEG) source localiza-
tion [11], as well as in our preliminary source localization
experiments with tetrodes [10]. The MUSIC algorithm is
more robust against noise than the closed-form solution, and
generates a single localization result, eliminating the need to
identify the accurate and spurious solutions from a pair.

The work presented here builds on our previous local-
ization work, and uses MUSIC-derived source locations
as EAP classification features. Classification efficacy was
quantitatively assessed by within- and inter-class analyses.

II. METHODS

A. Data Collection

Data used in this experiment is publicly available on-
line [12]. A planar silicon probe, developed by the Center for
Neural Communication and Technology of the University of
Michigan (now manufactured by NeuroNexus), was used for
recording. The probe was placed below the surface (∼50-
100 µm) of an adult locust’s antennal lobe. Recordings
were sampled at 15 KHz and bandpass filtered from 300
- 5,000 Hz. A total of 20 seconds of data was provided
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from four of the probe tip sensors. For a more detailed
data collection procedure please refer to [13]. Data analysis,
including detection, feature extraction, and classification, was
performed in MATALB.

B. Detection
Spike detection was performed using a supervised matched

filter for multi-sensor data. Half of the collected data was
used for training, and the remaining half was used for further
analysis. 25 EAPs, 2.7 ms each, were selected from the
training data, and used to generate a matched template,
s. Similarly, 20 noise samples, roughly 50 ms each, were
used to generate a noise covariance matrix, C. To sim-
plify the noise covariance calculation, noise processes were
assumed to be stationary, and uncorrelated in space. The
noise processes’ temporal statistics were also assumed to be
identical across the four sensors. Detection was performed
by thresholding the matched filter output at three standard
deviations above the noise mean

sTC−1x > γ (1)

where x is the signal, and γ is the threshold. A more detailed
derivation of the test statistic can be found in [14].

C. Feature Extraction
The classification scheme presented here uses neuron lo-

cation as a classification feature. The source of each detected
EAP was localized using the MUSIC algorithm. Briefly,
MUSIC assumes that an EAP, ψ(t), recorded with a c-sensor
array, can be described by the static linear system

ψ(t) = m(r)s(t) + w(t) (2)

where t is the time instant, m(r) ∈ Rc×1 is the lead field
vector (LFV) [11], [15] representing the system’s response to
a unitary signal input, s(t) ∈ R is the neuron’s firing strength,
and w(t) ∈ Rc×1 is zero-mean noise. The LFV can represent
a response to an arbitrary number of various source types,
from a single monopole-like source to complicated multi-
pole, multi-source systems. Similarly, no constraint is placed
on the number of sensors being used. Due to its simplicity,
both mathematically and computationally, our preliminary
localization work concentrated on a monopole LFV model.
Our results indicated that this model is sufficient for the
localization of signals recorded from a four-sensor micro-
electrode, or tetrode [10]. Therefore a monopole LFV model
was also used in this study. A more complex model, such as
the commonly used dipole model, could also be appropriate
here but may require data from more than four sensors [16].

The MUSIC algorithm localizes the EAP source by finding
the source location, r?, with an LFV most orthogonal to the
noise subspace

r? = argmin
r

m(r)TENEN
Tm(r)

m(r)Tm(r)
(3)

where EN ∈ Rc×(c−1) is the noise subspace, and is calcu-
lated via singular value decomposition of the recorded EAP,
ψ(t).

Note that EAPs are not filtered or aligned prior to local-
ization. A more detailed derivation of this method can be
found in our previous work [10].

D. Classification

MUSIC-derived locations from each detected EAP were
classified using an expectation-maximization (EM) algo-
rithm. The EM algorithm assumes Gaussian distributed clus-
ters for EAPs coming from a specific neuron, and a uniformly
distributed cluster of outliers. The EM algorithm was used
to group points into several different cluster models, and the
optimal cluster model, or number of clusters, was determined
by maximizing the Bayes Information Criterion across all
models [17]. For a detailed derivation of this classifier please
refer to our prior work [5].

E. Analysis

After classification each cluster was analyzed for aver-
age location and spread. The spread was quantified by a
standard radius, which is the norm of each cluster’s x, y,
and z standard deviations. The EAPs from each cluster were
aligned to their peak values and averaged to demonstrate the
representative waveforms for each cluster.

Waveform signatures, representing the relative signal
power across the four sensors, were then calculated for each
EAP. This signature was used to determine the consistency
of multi-sensor EAP shapes within a given cluster, and was
selected based on its robustness against both large noise
variations and possible variations in a single neuron’s firing
strength.

III. RESULTS

All 1040 EAPs detected in the 20 second data stream were
successfully localized using MUSIC. The EAP locations,
projected onto the x-y plane, are shown in Fig. 1 (Top).
This data was classified yielding 6 distinct location clusters,
centered at (0.4 36.4 0.5), (21.3 19.3 -0.1), (9.5 -25.7 -
0.1), (32.1 -8.0 -0.7), (-24.8 -14.4 0.2), (-25.4 13.5 -0.2) µm
with standard radii of 11.5, 10.1, 6.7, 12.3, 9.0, and 11.2
µm respectively [Fig. 1 (Bottom), Table I]. Only 34 source
locations were classified as outliers, representing 3% of the
data set.

The underlying EAP waveforms representing each source
location in a given cluster were analyzed to assess clas-
sification efficacy. The average waveforms are unique to
each location and distinguishable from each other (Fig. 2).
This is strong evidence that each cluster represents a unique
neuron. Furthermore, localization results for each cluster
make physical sense. Cluster N3 is localized closest to S1,
and displays the strongest signal at S1 (Fig. 2). Likewise,
N3 displays a stronger signal at S1 than any other cluster.
Similar observations are true for the remaining five clusters.
These results imply that neurons are localized accurately not
only with respect to the sensors, but also with respect to each
other.

Although the average waveforms are unique, all six have
relatively high standard deviations at the EAP peaks (up to
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Fig. 1: Top: MUSIC source localization results for all
1040 detected EAPs (blue). Sensor locations are depicted
in black and marked S1-4. Bottom: Classification results for
EAP source locations shown above. Black points represent
outliers, and all other colors represent distinct source location
clusters, labeled N1-6.

TABLE I: Location, standard radius, and classification accu-
racy of each class N1-6

Source N1 N2 N3 N4 N5 N6

Location
x (µm) 0.4 21.3 9.5 32.1 -24.8 -25.4
y (µm) 36.4 19.3 -25.7 -8.0 -14.4 13.5
z (µm) 0.5 -0.1 -0.1 -0.7 0.2 -0.2

Std. Radius (µm) 11.5 10.1 6.7 12.3 9.0 11.2

Accuracy (%) 98.1 77.5 95.4 98.1 90.1 77.2

4.9 standard deviations of the noise). This is not surpris-
ing as the waveforms were crudely aligned by peak EAP
values, greatly increasing the peak variance. Additionally,
biological noise is known to increase during spikes due to
the correlated activity of nearby neurons [18]. To determine
more conclusively if this high waveform variance implies
miss-classification, waveform signatures, defined here as the
signal power across the four sensors for each EAP, were
compared within clusters.

For clusters N1, N3, N4, and N5, the waveform signatures
are consistent with the average waveform signature among
98.9%, 95.4%, 98.1%, and 90.1% of the EAPs in each
cluster, respectively (Table I). This implies that the variance
in EAP waveforms across these clusters is most likely due
to miss-alignment or biological noise. It is reasonable to
conclude that these clusters represent unique and singular
neurons.

The remaining two clusters were slightly less consistent,
with 77.5% and 77.2% of the EAPs in N2 and N6, re-
spectively, matching their average waveform signatures. For
N6 the remaining 22.8% of waveforms match the waveform
signature of N1, and therefore seem to be miss-classified.
N2 on the other hand had a broad spectrum of EAPs not
matching the average waveform. This may imply that some
EAPs classified as N2 account for a different nearby neuron,
or a superposition from two or more neurons. Although
these clusters were less internally consistent, the results still
indicate that they represent distinct neurons.

Overall, classification based on our feature extraction
method successfully differentiated 6 unique and distinct
neurons from tetrode recorded EAPs. Furthermore, MUSIC-
derived neuron locations are physically relevant, implying
localization accuracy.

IV. DISCUSSION

The miss-classification observed in clusters N2 and N6
may be due in part to the geometry of the planar sensor
array used for recording. In general, the MUSIC algorithm
needs data from a three dimensional recording sensor array to
produce accurate localization results. However, the algorithm
will produce solutions, albeit less reliable ones, given data
from a planar array. Our preliminary work has shown that
solutions derived from a planar array have poor resolution
on the z-axis, assuming the sensor array is in the x-y plane,
and form short arcs of symmetry running though the true
source location [19].

This phenomenon can be seen in the localization results
presented here. The solutions form a rough circle around the
recording sensors, with each cluster assuming the general
outline of an arc. Likewise, the clusters are all located just
above or just below the recording array (Table I), giving very
little resolution on the z-axis. If a three-dimensional array is
used for recording, the clusters are expected to form tighter,
more Gaussian-like spheres, and be more reliably localized
on the z-axis, thus presenting a more constructive classi-
fication environment. This would likely decrease the miss-
classification rates, and the localization variance observed in
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Fig. 2: Average waveforms for each cluster shown in Fig. 1
(Bottom). Waveforms are color matched to the clusters. Note
that each cluster has a unique and distinguishable waveform
signature.

the present study.
The use of arrays with more than 4 sensors may also

decrease localization error and miss-classification rates. As
4 sensor localization is sensitive to outlying data, a larger
number of sensors may mitigate the effects of noise and
decrease localization variance.

Another notable characteristic of this feature extraction
scheme is its limited sensitivity to noisy or outlying signals.
Unlike the approach presented by Chelaru and Jog [8], where
39% of recorded spikes were filtered out and discarded
as outliers prior to analysis, the feature extraction scheme
presented here did not filter out any spikes prior to analysis.
Furthermore, only 3% of the classified spikes were identified
as outliers. Conserving most of the detected EAPs will
increase the reliability of further analysis, and improve the
amount of information that can be gathered from a given
recording session.

V. CONCLUSION

Six distinct EAP sources were successfully classified, with
an average accuracy of 89.5%, using source location as
a classification feature. This was achieved in spite of an
unfavorable recording sensor arrangement. Furthermore, the
classification scheme used here does not rely on any prior

knowledge of EAP class characteristics, and does not require
the signals to be aligned prior to classification. This decreases
the amount of signal processing necessary for classification,
allows a broader range of units to be identified, and permits
the algorithm to be completely unsupervised. Given our
results, this technique presents itself as a strong candidate
for broad use in extracellular signal analysis. Future work
will quantify the algorithm’s performance on more favorable
data sets, collected using a three-dimensional sensor array,
and on data sets from arrays having more than 4 sensors. The
algorithm’s performance under these conditions is expected
to significantly improve.
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