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Abstract— Signal detection represents the first processing
step in the analysis of extracellular action potentials (EAPs).
By combining the theory of wavelets with statistical signal
detection, we derived an approximation of the generalized
matched filter that is suitable for semi-supervised (noise known,
signal unknown) detection of EAPs in multisensor recordings.
When tested on experimental data recorded by a 4-sensor
electrode (tetrode), the filter yielded significant signal-to-noise
ratio improvements with respect to the original data and several
popular multivariate signal processing methods.

I. INTRODUCTION

A great deal of our understanding of neocortical function

in awake animals [1] and humans [2] can be attributed to

the interpretation of extracellular action potentials (EAPs).

Therefore, accurate detection of EAPs is crucial to ensure

accurate subsequent processing steps and ultimately correct

data interpretation. Detection of EAPs may be challenging

due to thermal, quantization, and ambient noise that are

imposed by the recording hardware and environment. Bio-

logical noise sources, such as EAPs of background neurons,

or ion-channel noise [3], are generally correlated with EAPs

of interest, further aggravating their detection.

In single-sensor recordings, the above problem can be

surmounted by single-unit isolation — a process wherein

the recording electrode is placed near a target neuron so

that its activity can be separated from noise and the activity

of nearby neurons. This yields recordings of high signal-to-

noise ratios (SNRs), thus obviating the need for sophisticated

EAP detection methods. In multisensor recordings, single-

unit isolation may be neither achievable nor desirable, as the

array provides sufficient information for multiple EAPs to

be disambiguated. Achieving this feat, however, requires the

development of appropriate array signal processing tools.

This article presents a rational design approach to building

a multisensor EAP detector. The proposed method is rooted

in statistical detection theory which is modified to account

for scenarios when the signals of interest are not known.

Based on biophysical constraints on the duration and shape of

EAPs, we argue that the SNR of extracellular recordings can

be significantly improved using an appropriate continuous

wavelet basis. We also show that ad hoc multivariate process-

ing methods may not only fail to improve, but can actually

lower the SNR. These points are objectively demonstrated

using experimental data recorded by a commercial tetrode.
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II. BACKGROUND

A. Multisensor EAP Detection

In general, automated approaches to EAP detection can

be supervised or unsupervised. Supervised detection assumes

that measurements of both EAPs and noise are available

before the detector is designed. In a multisensor setup, the

best-known representative of these techniques is the matched

filter approach by Gozani and Miller [4]. It departs from

the classical matched filter approach (see Section II-B) in

that it simultaneously maximizes the SNR and minimizes

the interference between EAPs to facilitate subsequent EAP

classification. However, minimizing the interference between

EAPs may compromise their detectability. In addition, this

method requires construction of EAP templates, which may

be inconvenient especially if the number of recorded neurons

is high (a single tetrode in a neuron-dense region may

simultaneously record activity from up to 20 neurons [5]).

In unsupervised (blind) detection, noise and EAP tem-

plates are generally unknown. However, a similar problem

is commonly encountered in approximation theory, where

blind signal/noise separation is effectively accomplished in a

suitable sparse representation basis [6]. Motivated by these

ideas, Nenadic and Burdick [7] applied Bayesian decision

theory in a continuous wavelet transform (CWT) domain

to develop a fully unsupervised EAP detection algorithm.

An extension of this work utilizes probabilistic models to

identify EAPs as outliers in a noise distribution [8]. However,

both of these methods are only suitable for single-sensor

data, and to the best of our knowledge, there are no methods

for unsupervised EAP detection in multisensor recordings.

Extracellular recordings often generate measurements that

contain no visually discernible EAPs. From this so-called

noise-only data, the noise statistics can be estimated and

utilized in EAP detection. Falling between the extreme cases

above, this approach to EAP detection will be referred to

as semi-supervised. In the context of tetrode recordings,

power detection [9] and a prewhitening transform [10] are

good representatives of this approach. The former method

calculates the power of data over a short time segment and

compares it to that of background noise. Since the power

of EAPs is expected to be above the baseline, a suitable

threshold can be defined that separates EAPs from noise [9],

[11]. The prewhitening approach, on the other hand, uses

the spatial covariance matrix of noise to decorrelate noise

samples across channels and normalize their variance to 1.

Detection thresholds are then set for each channel in the

prewhitened space [10].
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B. Statistical Detection Theory

The detection of EAPs can be posed as a statistical

hypothesis testing problem, where under the null hypothesis,

H0, no EAP is present, and under the alternative, H1, both

an EAP and noise are present. Expressed mathematically, we

have:

H0 : x(k) = n(k), k ∈ L

H1 : x(k) = s(k) + n(k), k ∈ L (1)

where x ∈ R
c×1 is a multisensor measurement, c is the

number of sensors, n ∈ R
c×1 is zero-mean sensor noise,

s ∈ R
c×1 is an EAP, and L = {1, 2, · · · , l}, with l being

the number of samples spanned by the EAP. Note that due

to variability of noise sources (see Section I), n cannot be

modeled as spatio-temporally white noise.

To utilize spatio-temporal information, let us organize the

measurement matrix X = [x(1)x(2) · · ·x(l)] ∈ R
c×l into

a row vector x = [x1(L)x2(L) · · ·xc(L)] ∈ R
1×c l, where

xi(L) is the ith row of X . The optimal decision rule is given

by the likelihood ratio test (LRT) [12]:

p(x |H1)

p(x |H0)

H1
>
<
H0

γ, (2)

which is understood as “accept H1 if the ratio exceeds γ,

otherwise accept H0.” The threshold γ can be based on either

an acceptable false alarm rate (Neyman-Pearson detector), or

the relative cost of false alarms and omissions as well as the

prior probabilities, P (H0) and P (H1) (Bayesian detector).

In these respective cases, the LRT (2) either maximizes the

probability of detection or minimizes the Bayes risk.

Let us assume Gaussian noise n ∼ N (0,Σ), where n ∈
R

1×c l is the row-vector form of the noise matrix, N =
[n(1)n(2) · · · n(l)] ∈ R

c×l, and Σ ∈ R
c l×c l is the spatio-

temporal noise covariance matrix. Under this condition, the

test (2) takes the form of a generalized matched filter (GMF):

sΣ−1xT

H1
>
<
H0

γ′, (3)

where s ∈ R
1×c l is the row-vector form of the signal matrix,

S = [s(1) s(2) · · · s(l)] ∈ R
c×l, and γ′ is the detection

threshold that subsumes γ and data-independent terms. Note

that the test statistic, T (x) = sΣ−1xT ∈ R, depends linearly

on the data x. Even if n is non-Gaussian, no other linear

combination of the data can achieve a SNR as high as T (x).
In this case, though, the performance of the GMF may fall

short of the LRT detector [12].

Based on Section II-A, we consider the following cases:

(C1) Samples of both n and s are available — SNR-optimal

detection is achievable based on (3).

(C2) Samples of n are available, but those of s are not

— near SNR-optimal detection should be achievable

based on (3) and an appropriate signal model.

(C3) Samples of neither n nor s are available — it is unclear

how to utilize (3), as Σ and γ′ are generally unknown.

We have thus created a common statistical ground for the

supervised, semi-supervised and unsupervised approaches to

EAP detection. In this article, we will pursue the case (C2),

while noting that the solution to (C1) is straightforward, but

may be impractical, and that (C3) remains open ended.

III. METHODS

When the signal of interest, s, is unknown, the perfor-

mance of the detector (3) depends on signal representa-

tion [13]. Our prior work [7], [8] provides extensive argu-

ments for using the CWT of the biorthogonal class for EAP

representation. Briefly, the shape of these wavelet functions

is reminiscent of the predominantly biphasic shape of many

EAPs [14]. Furthermore, since EAPs are highly localized

in time with characteristic durations of ∼1 ms [14], [15],

an extremely large set of CWT scales can be significantly

reduced. Finally, the translation invariance of the CWT

ensures that the representation of an EAP does not depend

on its relative position within the time series. These last

two properties of the CWT make it more suitable to EAP

detection than the commonly used discrete wavelet transform

with dyadic scales and translations [16], [17].

Let ψa,b(L) = [ψa,b(1)ψa,b(2) · · ·ψa,b(l)] ∈ R
1×l be

discrete samples of a compactly-supported wavelet function,

ψa,b ∈ L2(R), with the scale a > 0 and translation b. The

approximation of the GMF test statistic, T (x), at the scale

a and translation b is given by:

Ta,b(x) = ψa,b











Σ1,1 Σ1,2 · · · Σ1,c

Σ2,1 Σ2,2 · · · Σ2,c

...
...

. . .
...

Σc,1 Σc,2 · · · Σc,c











−1

xT (4)

where ψ
a,b

∈ R
1×c l is the row-vector form of the matrix:

Ψa,b =











ψa,b(L)
ψa,b(L)

...

ψa,b(L)











∈ R
c×l

and the submatrix Σi,i ∈ R
l×l is the temporal covariance

matrix of noise at sensor i. Similarly, Σi,j ∈ R
l×l (j 6= i)

is the temporal cross-covariance matrix of noise at sensors i
and j. In general, estimating the full covariance matrices may

require a prohibitively large noise sample. Assuming wide-

sense stationary noise, we obtain submatrices Σi,j (∀i, j =
1, 2, · · · , c) in Toeplitz (strip diagonal) form, which reduces

the number of parameters from (l2 + l)/2 to l.
Written explicitly, the test statistic (4) becomes: Ta,b(x) =

∑c
i=1 h

i
a,b x

T
i (L), where a basis vector, hi

a,b ∈ R
1×l, is

defined as:

hi
a,b = ψa,b(L)

c
∑

j=1

Σ̃j,i i = 1, 2, · · · , c (5)

In other words, Ta,b is obtained by projecting the ith row of

the data matrix X onto hi
a,b and summing the projections

over sensors. The matrix, Σ̃j,i ∈ R
l×l, is the submatrix
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of Σ
−1 corresponding to the block {j, i} [see Eq. (4)].

Note, however, that Σ̃j,i 6= Σ
−1
j,i . To process the whole

length-t time series, as opposed to a length-l block, we vary

translation b over the set T = {0, 1, · · · , t−1}. Alternatively,

we can slide the basis vectors (5) sample-by-sample, and at

each position, we obtain Ta,b by projection and summation

over sensors. This is efficiently implemented by flipping

the basis vectors hi
a,b, followed by a convolution with the

individual sensor data and summation over sensors. Note that

this results in a single-scale test statistic, Ta(T ) ∈ R
1×t,

and that the basis vectors processed in this manner represent

the impulse response of a wavelet-approximated generalized

matched filter (AGMF).

IV. RESULTS

A. Experimental Data

The data collection process is described in [18]. Briefly,

a planar silicon probe [19] consisting of 4 tetrodes was

placed beneath the surface of the antennal lobe of an adult

locust. Only 20 s of data from one of the tetrodes is publicly

available [20]. The signals were amplified, band-pass filtered

(300-5,000 Hz), and sampled at 15 kHz.

To objectively measure the SNR, 20 EAPs and 25 noise

segments (duration between 10 and 60 ms), were randomly

selected and manually delineated in the time series data.

Extracting longer noise segments was not possible due to

the high firing rates of the neurons (see Fig. 1). Note that

these noise samples were used to design the basis vectors (5),

whereas the sole purpose of the EAPs was for validation.

Fig. 1. The traces represent 200 ms of tetrode data (c = 4). One of
the 20 manually selected EAPs is highlighted in red (duration 2 ms). A
50-ms-segment containing noise-only data is shown in black.

B. Approximate Generalized Matched Filter

Based on a typical EAP duration, we assumed a signal

length of 2 ms (l = 31). For each noise segment and each

sensor pair {i = 1, 2, 3, 4; j ≥ i}, cross- and auto-covariance

sequences, ri,j(k), were calculated at lags k ∈ [−30, 30].
These sequences were then averaged over the 25 noise

segments to obtain stable estimates. Note that unlike auto-

covariance, cross-covariance is not guaranteed to be an even

function, although the values of ri,j(k) and ri,j(−k) were

very close. Therefore, the cross-covariance sequences were

averaged over the positive and negative lags, i.e. r̄i,j(k) =
0.5 [ri,j(k) + ri,j(−k)], k ∈ [0, 30], resulting in a total of

310 (31×10) parameters. Finally, the p-values of r̄i,j(k) were

estimated by a Monte-Carlo simulation, and those r̄i,j(k)
deemed statistically insignificant (p≥0.05) were set to 0. This

further reduced the number of parameters to 269. Toeplitz

matrices, Σi,j , were then created and used as the building

blocks of Σ (see Fig. 2). Note that Σj,i = Σ
T
i,j .

Fig. 2. The spatio-temporal noise covariance matrix, Σ. Each block,
Σi,j ∈ R

31×31, is either the temporal covariance matrix of sensor i

(j = i), or the temporal cross-covariance matrix between sensors i and
j (j 6= i).

Biorthogonal wavelets (bior1.51) were chosen due to their

EAP-like shape (Fig. 3). The scale a was chosen so that the

duration of the dominant two phases of the wavelet matches

that of an EAP. For many EAPs, this falls between 0.5 and

2 ms [14], [15], thus 16 scales were chosen to cover the

[0.5, 2.0] ms range in 0.1-ms increments. Fig. 3 shows the

wavelet function whose scale matches a 1-ms-long EAP. It

also shows the basis vectors (5) at this scale.

Fig. 3. Wavelet function and the basis vectors for sensors 1–4.

C. Signal-to-Noise Ratio

For each selected EAP, S(u) ∈ R
4×31 (u = 1, 2, · · · , 20),

and noise segment, N (v) ∈ R
4×dv (v = 1, 2, · · · , 25; dv-

variable), the SNR at sensor i was defined as:

SNRi(u) = median
v

{

‖s
(u)
i ‖∞

‖n
(v)
i ‖∞

}

(6)

1The notation is consistent with MATLABTMWavelet Toolbox.
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Fig. 4. A sample of 20 EAPs recorded with a tetrode (EAPs labeled 1-20, sensors labeled 1-4). Each trace is 2 ms long. The horizontal lines mark ±5σ

bounds, and the number next to each waveform represents its median SNR.

Fig. 5. Test statistic of 20 EAPs at 4 wavelet scales corresponding to the durations 0.8, 1.4, 1.6 and 2.0 ms. Each trace is 2 ms long. The horizontal lines
mark ±5σ bounds estimated from the test statistic of noise, and the number above each waveform represents its median SNR.

where s
(u)
i and n

(v)
i are the ith rows of matrices S(u) and

N (v), respectively. Note that since nearly all detectors are

threshold based, the SNR is more appropriately defined using

the L∞-norm than the commonly used L2-norm. Apart from

scaling the SNR values, the use of the L2-norm did not affect

the results presented below.

Fig. 4 shows the selected EAPs as well as the distribution

of the SNRs across EAPs and sensors. Visual inspection

confirms the diversity of the sample, as there appears to be

at least 6 distinct classes of EAPs. The average SNR ranged

from ∼2 (EAPs 3 and 10) to ∼4.5 (EAPs 1 and 6). Also

shown are the noise bounds estimated by averaging the noise

standard deviation over the 25 noise segments.

Fig. 5 shows a similar plot for the data processed using the

procedure described in Section III. Briefly, for each of the

16 scales, the 4 basis vectors (e.g. Fig. 3) were flipped and

convolved with their respective sensor data. The resulting

test statistics were summed over sensors, yielding the test

statistic sequence, Ta(T ) ∈ R
1×30000, (a = a1, a2, · · · , a16).

From the samples of Ta(T ) corresponding to EAPs and noise

segments, the SNRs were calculated from (6), while formally

replacing sensors, i, with scales, a. In the interest of space,

Fig. 5 shows the EAP test statistic at 4 representative scales.

Even from this reduced set of scales, it is apparent that

substantial SNR improvements are achieved by the AGMF.

To formally ascertain the degree of SNR improvement,

we performed statistical tests on the SNR of 20 EAPs. The

maximum SNR per sensor was calculated for each of the 20

EAPs in the original data, yielding the following sequence of

SNRs: 6.0, 5.2, · · · , 3.3 (see Fig. 4). Similarly, the maximum

SNR per scale was calculated for each EAP in the AGMF-

processed data (see Fig. 6). A sign test showed that the SNRs

of the processed EAPs were significantly superior to those of

the original data (p<0.00004), with a median improvement

of 38%. A similar test was performed to compare the

maximum SNR per sensor to the SNRs at the 16 individual

scales (i.e. without taking the maximum over scales). It was

found that the SNRs at 10 scales (1.1–2.0 ms) were superior

to the maximum SNR based on the original data. These

results indicate that even if the analysis is performed at a
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single wavelet scale, the SNR improvements with respect

to the original data are significant (Fig. 6). This figure also

shows the distribution of SNRs across EAPs achieved with

the power method [9], [11] and spatial prewhitening [10].

The power method was implemented by calculating the root-

mean-square value of the data at each sensor in a 2-ms

sliding window. The SNR on a per sensor basis was then

calculated using (6). Finally, the spatial prewhitening method

was implemented by averaging the spatial covariance matrix

over 25 noise segments. The resulting matrix, Σs ∈ R
4×4,

was then spectrally decomposed, and the prewhitening matrix

Σ
−1/2
s was calculated [21] and used to premultiply the

tetrode data. As expected (see Fig. 6), a sign test showed

that the SNR of the power method was significantly superior

to the original SNR (p<0.0004), with a median improvement

of 22%. The SNR of the prewhitening method, however, was

inferior to the original SNR (p<2×10−6), with a median

loss of 10%. In addition, both the power and prewhitening

methods were significantly inferior to the AGMF method,

with p<0.01 and p<0.00004, respectively, and a median loss

of 18% and 35%, respectively.

Fig. 6. Maximum (per sensor) SNR of the original, power, and spatially
prewhitened (PW) data. Maximum (per scale) and best scale (b.s.) SNR of
the AGMF-processed data. Maximum (per component) SNR of the PCA-
and ICA-processed data.

We conclude this section by comparing the above methods

to two popular unsupervised techniques: principal and inde-

pendent component analysis (PCA and ICA, respectively).

PCA yielded a median SNR improvement of 6% with respect

to the original data, however, this gain was not statistically

significant. ICA, on the other hand, resulted in a significant

loss (20%) of SNR with respect to the original data.

V. DISCUSSION AND CONCLUSION

By combining statistical detection theory with continuous

wavelet representation, we derived an approximation of the

generalized matched filter suitable for semi-supervised EAP

detection problems, where the noise samples are available,

but the signal samples are not. The method outperforms other

multisensor EAP detection approaches by yielding a signifi-

cantly higher SNR when tested on representative EAPs and

noise extracted from experimental data. A notable exception

is EAP 3, which is characterized by the weak signals at 3

sensors (Fig. 4). This is hardly surprising as the test statistic,

Ta,b(x), combines data across sensors, which in this case

“dilutes” the SNR. Our work also shows that the use of ad

hoc multisensor data processing methods may not only fail to

improve the SNR, but may actually lower it. Future studies

will focus on a formal testing of the AGMF method for

the detection of EAPs under different sensitivity-specificity

tradeoffs and in the presence of EAPs with temporal overlap.

Finally, we will also pursue the development of a fully

unsupervised multisensor EAP detection method.

REFERENCES

[1] R.A. Andersen and H. Cui. Intention, action planning, and decision
making in parietal-frontal circuits. Neuron, 63(5):568–583, 2009.

[2] R.Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant
visual representation by single neurons in the human brain. Nature,
435(7045):1102–1107, 2005.

[3] J.A. White, J.T. Rubinstein, and A.R. Kay. Channel noise in neurons.
Trends Neurosci., 23(3):131–137, 2000.

[4] S.N. Gozani and J.P. Miller. Optimal discrimination and classification
of neuronal action potential waveforms from multiunit, multichannel
recordings using software-based linear filters. IEEE Trans. Biomed.

Eng., 41(4):358–372, 1994.
[5] M.A. Wilson and B.L. McNaughton. Dynamics of the hippocampal

ensemble code for space. Science, 261(5124):1055–1058, 1993.
[6] S.G. Mallat. A Wavelet Tour of Signal Processing. Academic Press,

San Diego, CA, 1999.
[7] Z. Nenadic and J.W. Burdick. Spike detection using the continuous

wavelet transform. IEEE Trans. Biomed. Eng., 52(1):74–87, 2005.
[8] R. Benitez and Z. Nenadic. Robust unsupervised detection of action

potentials with probabilistic models. IEEE Trans. Biomed. Eng.,
55(4):1344–1354, 2008.

[9] J. Csicsvari, H. Hirase, A. Czurko, and G. Buzsáki. Reliability
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