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Abstract— Electrocorticogram (ECoG)-based brain computer
interfaces (BCI) can potentially be used for control of arm
prostheses. Restoring independent function to BCI users with
such a system will likely require control of many degrees-of-
freedom (DOF). However, our ability to decode many-DOF arm
movements from ECoG signals has not been thoroughly tested.
To this end, we conducted a comprehensive study of the ECoG
signals underlying 6 elementary upper extremity movements.
Two subjects undergoing ECoG electrode grid implantation for
epilepsy surgery evaluation participated in the study. For each
task, their data were analyzed to design a decoding model to
classify ECoG as idling or movement. The decoding models
were found to be highly sensitive in detecting movement, but
not specific in distinguishing between different movement types.
Since sensitivity and specificity must be traded-off, these results
imply that conventional ECoG grids may not provide sufficient
resolution for decoding many-DOF upper extremity movements.

I. INTRODUCTION AND BACKGROUND

Electrocorticogram (ECoG) has been increasingly used as
a signal acquisition modality for brain-computer interface
(BCI) applications. Unlike action and local field potentials
that rely on intracortical implantation of microelectrodes,
ECoG can be acquired using less invasive surgical proce-
dures. Therefore, this signal acquisition modality may have
better long-term stability properties.

The majority of ECoG-based BCI studies have focused
on decoding the kinematic parameters of upper extremity
movements. Examples include decoding and resolving the
movement of individual fingers [1], [2], [3], the onset and
direction of reaching movements [4], [5], as well as elbow
and hand movements [5], [6]. While reaching, grasping
and finger movements are important components of nearly
all goal-oriented upper extremity tasks, these movements
alone are insufficient to regain the upper extremity functions
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necessary for restoring independence in potential BCI arm
prosthesis users. Based on the Functional Independence
MeasureTM tool [7], tasks required for independent living,
such as dressing, toileting, and transferring, require more
complex upper extremity movements. Consequently, the abil-
ity to decode six-degree-of-freedom (DOF) movements from
ECoG signals may be required to achieve arm prosthesis
control capable of restoring independence to those with
upper extremity paralysis. However, a comprehensive study
of elementary arm movements and their correlation with
ECoG signals has yet to be performed.

This study examines the representation of six elementary
finger, hand, and arm movements in ECoG signals, and
whether these movements can be distinguished from one
another. Conceptually, there are two approaches to this prob-
lem. In the first approach, a binary classifier may be designed
to detect the absence/presence of movement, followed by a
multi-class decoder to decide which of the several possible
movements was performed. However, this approach renders
the movements of individual joints mutually exclusive. The
alternative approach used in this study is to design a binary
classifier to detect the absence/presence of movement at
each joint. An example of detecting wrist movements in
real time to drive the “wrist” of a robot arm can be found
at: http://youtu.be/DOD3ZyodzbY. As seen in the
video, the wrist movements can be detected accurately (i.e.
high sensitivity), although the model was not very specific,
as it would detect movements of other joints. For example,
the task in the above video could be accomplished by elbow
instead of wrist movements.

Motivated by these observations, this study seeks to for-
mally test the sensitivity and specificity of models for six
elementary upper extremity movements. Accurate detection
of movement of a particular joint (i.e. sensitivity) is a
prerequisite for a reliable detection of the onset of movement.
Conversely, the ability to distinguish movements from one
another (i.e. specificity) is important for accurate control of
multi-joint upper extremity prostheses.

II. METHODS

A. Overview

Subjects undergoing subdural ECoG electrode implanta-
tion over the primary motor cortex (M1) performed a series
of six elementary arm movements while their ECoG signals
were recorded. Offline analysis of data corresponding to
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each movement type generated a decoding model to classify
ECoG signals into idling or movement states. The classifi-
cation accuracies of these models were then estimated using
cross-validation. In addition, each model’s performance in
classifying ECoG data from the other five movements was
tested. From these classification results, the sensitivity and
specificity of each decoding model were determined.

B. Signal Acquisition and Training Data Collection

This study was approved by the Institutional Review
Boards of UCI and RLANRC. Subjects were recruited from
an epilepsy patient population undergoing resection surgery
evaluation. They had subdural electrodes implanted over the
M1 arm representation area. Up to 64 channels of ECoG data
were recorded (sampling rate: 2048 Hz, a common average
reference) with a pair of linked Nexus-32 bioamplifiers
(Mind Media, Roermond-Herten, The Netherlands).

The subjects performed the following elementary move-
ments on the side contralateral to their ECoG electrode
implant: (1) pincer grasp/release (PG); (2) wrist flex-
ion/extension (W); (3) forearm pronation/supination (PS),
(4) elbow flexion/extension (E); (5) shoulder forward flex-
ion/extension (SFE); (6) shoulder internal/external rotation
(SR). For movements PG and W, the trajectory was measured
by a custom-made electrogoniometer [8]. The remaining
movement trajectories (PS, E, SFE, SR) were measured
using a gyroscope (Wii Motion Plus, Nintendo, Kyoto,
Japan). All trajectory signals were acquired using an Arduino
microcontroller unit (Smart Projects, Turin, Italy). ECoG
data were synchronized with the trajectory signals using a
common pulse train sent to both acquisition systems. For
each movement type, the task consisted of performing 4
sets of 25 continuous movement repetitions, with each set
intervened by a 20-30 sec rest (idling) period.

C. Decoding Model Design and Testing

To determine the sensitivity of movement detection for
each task (encompassing both movement and idling), a
decoding model (details in [9]) was designed using the
corresponding ECoG data. Briefly, ECoG was synchronized
with the motion sensor data using the common pulse train.
Subsequently, epochs of idling and movement were delin-
eated based on the trajectory measurements and a suit-
ably chosen threshold. ECoG signals were then labeled
accordingly, divided into 0.75-sec-long trials, and the power
spectral density (PSD) of each trial was calculated using the
Fourier Transform. PSDs were integrated over the µ (8-13
Hz), β (13-30 Hz ), low γ (30-50 Hz), and high γ (80-
160 Hz) bands. These bands were selected because of their
involvement in upper extremity movements [10], [11]. To
equalize disparate power levels, especially between the µ and
high-γ bands, the logarithm of integrated PSDs was taken.

Features were extracted using a combination of classwise
principal component analysis (CPCA) [12], [13] and approx-
imate information discriminant analysis (AIDA) [14]. More
formally, spatio-spectral features were extracted by:

f = TAΦC(d) (1)

where f ∈ R is the feature, d ∈ RB×C are single-
trial spatio-spectral ECoG data (B-the number of frequency
bands, C-the number of channels), ΦC : RB×C → Rm

is a piecewise linear mapping from the data space into
the m-dimensional CPCA-subspace, and TA ∈ Rm is an
AIDA transformation matrix. These techniques are rooted in
information theory [15], [16], and their detailed descriptions
can be found in [13], [14]. A linear Bayesian classifier:

f? ∈

{
I, if P (I |f?) > P (M|f?)
M, otherwise

(2)

was then designed in the feature domain, where P (I |f?)
and P (M|f?) are the posterior probabilities of “idling”
and “movement” classes, respectively, given the observed
feature, f?. They were obtained from the Bayes theorem
after assuming p(f?| I) and p(f?|M) are homoscedastic
Gaussian probability density functions. The above procedure
was performed for each task, resulting in a total of six
decoding models.

For each decoding model, 10 runs of stratified 10-fold
cross-validation [17] were performed. The output of the
classifier (2) was compared to the class identity of the test
data, which generated the following confusion matrix:

Model\Test Ia Ma

Ia P (Ia| Ia) P (Ia|Ma)
Ma P (Ma| Ia) P (Ma|Ma)

(3)

Sensitivity, formally defined as P (Ma|Ma), represents
the probability of decoding model a correctly classifying
the occurrence of movement during task a. For example,
the highly sensitive model for the PG task would classify
all epochs of PG movements as movement class. Similarly,
P (Ia| Ia) represents the probability of correctly classifying
the occurrence of idling during the same task. Note that the
vertical sum of the elements in (3) is 1.

To assess the specificity of model a, ECoG data corre-
sponding to task b (b 6= a) were classified using model a.
This procedure generated the following confusion matrix:

Model\Test Ib Mb

Ia P (Ia| Ib) P (Ia|Mb)
Ma P (Ma| Ib) P (Ma|Mb)

(4)

We define specificity as 1 − P (Ma|Mb), where
P (Ma|Mb) represents the probability of model a clas-
sifying movement b as movement a—an undesirable out-
come. For example, P (MPG|MW) would be high if the PG
model frequently classified W movement as PG movement,
indicating the low specificity of the model. Note that the
specificity can also be expressed as P (Ia|Mb), as elements
vertically sum to 1. Also note that this definition deviates
from specificity in the classical sense, defined as P (Ia| Ia).
Hence, a more appropriate name would be “cross-specificity,”
although the term specificity will be retained since the
contextual distinction is clear. Similarly, P (Ia| Ib) represents
the probability of model a classifying idling epochs as idling
during task b. If idling behaviors during tasks a and b are
similar, this probability would be high.
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TABLE I
THE SENSITIVITY AND SPECIFICITY OF MOVEMENT DECODING FOR SUBJECT S1 (ERROR BARS OMITTED TO SAVE SPACE). THE SHADED BLOCKS ON

THE DIAGONAL ARE THE PROBABILITIES DEFINED BY (3) FOR EACH MODEL a = {PG, W, PS, E, SR, SFE}. THE SENSITIVITY IS THE NUMBER IN

THE BOTTOM RIGHT CORNER OF EACH BLOCK. THE OFF-DIAGONAL BLOCKS ARE THE PROBABILITIES DEFINED BY (4), WITH THE SPECIFICITY BEING

THE NUMBER IN THE TOP RIGHT CORNER. THE MAXIMUM PER ROW IS MARKED BY †, AND THE OVERALL MAXIMUM IS MARKED BY ‡.

Model\Test IPG MPG IW MW IPS MPS IE ME ISR MSR ISFE MSFE

IPG 0.96 0.04 0.92 0.12 0.89 0.24 0.93 0.21 0.78 0.24 0.94 0.57‡

MPG 0.04 0.96 0.08 0.88 0.11 0.76 0.07 0.79 0.22 0.76 0.06 0.43
IW 0.88 0.10 0.91 0.02 0.84 0.08 0.93 0.05 0.68 0.04 0.91 0.23†

MW 0.12 0.90 0.09 0.98‡ 0.16 0.92 0.07 0.95 0.32 0.96 0.09 0.77
IPS 0.91 0.06 0.89 0.01 0.89 0.10 0.88 0.05 0.64 0.02 0.76 0.07†

MPS 0.09 0.94 0.11 0.99 0.11 0.90 0.12 0.95 0.36 0.98 0.24 0.93
IE 0.80 0.04 0.89 0.01 0.75 0.05 0.89 0.02 0.66 0.02 0.89 0.07†

ME 0.20 0.96 0.11 0.99 0.25 0.95 0.11 0.98‡ 0.34 0.98 0.11 0.93
ISR 0.97 0.23† 0.94 0.09 0.91 0.23† 0.93 0.08 0.85 0.07 0.88 0.23†

MSR 0.03 0.77 0.06 0.91 0.09 0.77 0.07 0.92 0.15 0.93 0.12 0.77
ISFE 0.76 0.13† 0.88 0.03 0.71 0.08 0.88 0.00 0.57 0.02 0.94 0.06
MSFE 0.24 0.87 0.12 0.97 0.29 0.92 0.12 1.00 0.43 0.98 0.06 0.94

TABLE II
THE CLASSIFICATION OUTCOME OF SUBJECT S2. THE DATA IS ORGANIZED IN THE SAME MANNER AS IN TABLE 1.

Model\Test IPG MPG IW MW IPS MPS IE ME ISR MSR ISFE MSFE

IPG 0.90 0.01 0.94 0.01 0.88 0.02 0.86 0.31 0.78 0.00 0.80 0.84‡

MPG 0.10 0.99 0.06 0.99 0.12 0.98 0.14 0.69 0.22 1.00 0.20 0.16
IW 0.73 0.00 0.94 0.00 0.83 0.01 0.78 0.23 0.71 0.00 0.64 0.75†

MW 0.27 1.00 0.06 1.00‡ 0.17 0.99 0.22 0.77 0.29 1.00 0.36 0.25
IPS 0.74 0.02 0.86 0.00 0.92 0.00 0.76 0.09 0.69 0.00 0.70 0.60†

MPS 0.26 0.98 0.14 1.00 0.08 1.00‡ 0.24 0.91 0.31 1.00 0.30 0.40
IE 0.89 0.20 0.92 0.04 0.94 0.05 0.89 0.05 0.85 0.02 0.87 0.21†

ME 0.11 0.80 0.08 0.96 0.06 0.95 0.11 0.95 0.15 0.98 0.13 0.79
ISR 0.88 0.03 0.93 0.00 0.95 0.03 0.89 0.25 0.87 0.01 0.82 0.70†

MSR 0.12 0.97 0.07 1.00 0.05 0.97 0.11 0.75 0.13 0.99 0.18 0.30
ISFE 0.81 0.75† 0.67 0.23 0.73 0.21 0.78 0.04 0.67 0.07 0.93 0.02
MSFE 0.19 0.25 0.33 0.77 0.27 0.79 0.22 0.96 0.33 0.93 0.07 0.98

III. RESULTS

Two subjects undergoing subdural electrode implantation
for epilepsy surgery evaluation were recruited for this study.
Subject S1, a 20-year-old female, was implanted with an 8×8
grid located on the left anterior frontal temporal area and a
1×6 posterior frontal strip. To accommodate the 64-channel
limit of our data acquisition system (see Section II-B), 6
electrodes on the most anterior column of the 8×8 grid were
excluded. Note that these electrodes were unlikely to carry
any motor-related information due to their anterior frontal
location. Subject S2, a 28-year-old female, was implanted
with a 6×8 subdural electrode grid in the right frontal
parietal area. Each subject was able to complete the 6 tasks
described in Section II-B. Their ECoG data were analyzed
as described above, and the decoding results are reported in
Tables I and II for the two subjects, respectively.

Based on the results from Table I, we conclude that the
movements in all six tasks could be detected with high
sensitivity for subject S1, ranging from 0.90 for PS to 0.98
for W and E (marked by ‡). The average sensitivity across
all models written in the format mean (standard deviation)
was 0.95 (0.03). At the same time, the values of P (Ia| Ia)

ranged from 0.85 (SR) to 0.96 (PG), averaging 0.91 (0.04).
Similarly, for subject S2 (Table II), the sensitivity ranged
from 0.95 (E) to 1.00 (W, PS), with the average of 0.98
(0.02) across all models. Similar to subject S1, P (Ia| Ia)
ranged from 0.87 (SR) to 0.94 (W) with the average of 0.91
(0.02). Thus, we conclude that the high sensitivity did not
compromise the models’ ability to correctly detect the idling
class, as evidenced by relatively high values of P (Ia| Ia).

Unlike sensitivity, the specificity of individual models
was very low. For example, the model for SFE classified
all instances of elbow movement as shoulder forward flex-
ion/extension movements (Table I), yielding zero specificity
[P (ISFE|ME) = 0.00]. This means that a BCI designed
to decode shoulder movement could be operated by elbow
movement. On the other hand, the model for PG was
somewhat specific with respect to SFE, as it had a specificity
of 0.57. On average, the specificity of all models with
respect to all movements was 0.11 (0.12) for subject S1.
Similarly, for subject S2, the specificity ranged from 0.00
(model/test: PG/SR, W/PG, W/SR, PS/W, PS/SR, SR/W)
to 0.84 (model/test: PG/SFE). The average specificity for
subject S2 across all models with respect to all movements
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was 0.19 (0.26). Finally, the probability P (Ia|Ib) averaged
0.84 (0.10) for subject S1, and 0.81 (0.09) for subject S2,
indicating that ECoG signals during idling were similar
across all tasks. Note, however, that this is expected, given
that idling behavior is similar across tasks, and unlike con-
fusing movements during different tasks, this is considered
a positive outcome.

IV. DISCUSSION

The decoding models generated for each movement type
were very sensitive in detecting the presence of movement
during all six tasks. Therefore, we conclude that ECoG
signals carry a significant amount of information about the
six elementary upper extremity movements. This opens the
possibility that M1 encoding of complex movements may
ultimately be a combination of several elementary movement
components. However, this hypothesis will require formal
testing. Nevertheless, the high sensitivity reported here may
eventually be used to facilitate the future development
of ECoG-based BCI-controlled upper extremity prostheses.
Note that this may be contingent upon good ECoG grid
coverage over M1.

These decoding models had low specificity, i.e. model a
had a tendency of confusing movement type b as its own
movement. Only in some cases, such as when using the
PG model to decode SFE data in subjects S1 and S2, was
this confusion somewhat lower (specificity of 0.57 and 0.84,
respectively). The increased specificity for this particular
model/test pair is likely due to the somatotopic, anatomical
separation of finger from shoulder representation areas on
M1. Namely, since the shoulder motor representation area
tends to be more medial compared to finger areas, this
may lead to a spatial separation between the ECoG features
underlying PG and SFE. The SFE movements were the least
confused by the other models for both subjects (see the
last column of Table I and II). Conversely, the somatotopic
proximity of neighboring upper extremity joint representa-
tion areas may explain why ECoG features underlying their
movements appear to be similar and confuse their respective
decoding models. To increase the specificity of these models,
the design of the classifier for each movement task may need
to involve ECoG data underlying other movements. Given
the sensitivity-specificity trade-off, this will likely reduce the
sensitivity of these models.

The similarity of idling behaviors across all tasks, as
evidenced by the relatively high values of P (Ia|Ib), is not
surprising. In instances where this probability was somewhat
lower, such as the SFE/SR pair, it can be hypothesized
that other factors may have been involved during these
idling epochs, such as postural and dynamic stabilization
differences, covert movements, or motor planning.

V. CONCLUSION

This study demonstrates that the classification of idling
and movement in elementary upper extremity movement
tasks is highly sensitive, but not specific. While the speci-
ficity of these models could be improved, it will likely

result in a reduction of sensitivity. These results suggest
that conventional ECoG grids do not provide sufficient
resolution for decoding 6-DOF upper extremity movements.
This problem could be partially mitigated by sacrificing some
DOFs, although this may limit the applicability of BCI-
controlled upper extremity prostheses. Alternatively, the use
of micro-ECoG electrodes may increase the separability of
upper extremity movements, and in turn provide a better
decoding resolution.
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