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Abstract— Neurological conditions, such as stroke, can leave
the affected individual with hand motor impairment despite in-
tensive treatments. Novel technologies, such as brain-computer
interface (BCI), may be able to restore or augment impaired
motor behaviors by engaging relevant cortical areas. Here, we
developed and tested an electroencephalogram (EEG) based
BCI system for control of hand orthosis. An able-bodied subject
performed contralateral hand grasping to achieve continuous
online control of the hand orthosis, suggesting that the integra-
tion of a noninvasive BCI with a hand orthosis is feasible. The
adoption of this technology to stroke survivors may provide a
novel neurorehabilitation therapy for hand motor impairment
in this population.

I. INTRODUCTION

Many stroke survivors are affected by hand motor impair-

ment, and despite best therapy, functional recovery typically

plateaus 3-6 months after stroke [1]. In addition, treatments

for individuals affected by distal upper extremity weakness

are rather limited, and so alternative biomechanical therapies

have been sought. Brain-computer interface (BCI) may offer

a novel approach to restoring or augmenting lost motor

behaviors in stroke patients. In addition to controlling an

external device to restore these motor functions, BCIs may

facilitate the reinforcement of spared connections between

the post-stroke motor cortex and spinal motor pools relevant

to the lost motor function [2], [3], [4].

Generally, BCIs control an external device by analyzing

neurophysiological signals associated with a motor process

and translating them into commands to drive the device in

real time. Successful BCI applications include the control of

computer cursors [5], virtual keyboards [6], movement within

virtual reality environments [7], robotic arms [8], functional

electrical stimulation devices [9], and hand orthoses for

stroke rehabilitation [10], [11]. However, previous BCI-hand

orthosis systems either required extensive training [10], or

lacked continuous online control [11].
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II. METHODS

A. Overview

An electroencephalogram (EEG) based BCI system was

integrated with a hand orthosis [12] suitable for rehabilitation

of impaired hand motor function. To demonstrate purposeful

control, the proposed system (Fig. 1) was tested on an

able-bodied subject engaged in a contralateral control hand-

grasping paradigm. More specifically, the subject underwent

alternations of voluntary right hand idling and repetitive

grasping while her EEG patterns were decoded in real time

and used to trigger the corresponding action of the left hand

orthosis. This paradigm was chosen since in able-bodied

subjects, ipsilateral control paradigm would produce con-

founding results, as it would be difficult to resolve voluntary

and BCI-mediated orthosis movements.

Fig. 1. EEG underlying right hand idling and grasping is measured by
an EEG cap and sent to a computer for analysis. The computer then sends
control commands to an orthotic glove [12] mounted on the left hand. Two
electrogoniometers [13] mounted on each hand measure hand movements.
The subject follows textual cues displayed on a computer screen.

B. Signal Acquisition

An able-bodied female (age 24, with ∼10 hr of BCI

experience) was seated ∼1 m from a computer screen that

displayed textual cues (Fig. 1). EEG was recorded using a

63-channel cap (Medi Factory, Heerlen, The Netherlands)

with Ag-AgCl electrodes arranged according to the 10-20

International Standard. Conductive gel was applied to all

electrodes and the electrode impedances were maintained

at <10 kΩ by abrading the scalp with a blunt needle. The

EEG signals were amplified, band-pass filtered (4-40 Hz),

digitized (sampling rate: 256 Hz, resolution: 22 bits), and ac-

quired in a common average reference mode using two linked

32-channel EEG amplifier systems (MindMedia, Roermond-

Herten, The Netherlands). Finally, the EEG signals were

streamed in real time and analyzed using custom-written

MATLAB (MathWorks, Natick, MA) programs.
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C. Training Procedure & Offline Signal Analysis

The subject underwent a 20-min training session consist-

ing of 200 trials of alternating epochs (6 sec) of idling

and repetitive right hand grasping while her EEG was

recorded. To identify grasping and idling epochs in EEG,

a custom-made electrogoniometer [13] was mounted on the

metacarpophalangeal joint of the right middle finger. The

goniometer signals were acquired with an auxiliary data

acquisition system (Biopac Systems, Goleta, CA), and were

synchronized with EEG signals using a common pulse train.

The training EEG data were then analyzed offline. First,

channels with muscle artifacts were automatically detected

by our signal processing algorithm and excluded from further

analysis. The continuous 20-min EEG record was then split

into 100 idle and 100 grasping trials based on the goniometer

signals. For each trial, the 6-30 Hz EEG power spectrum

was calculated in 2-Hz bins. This resulted in a 12 × C

dimensional data matrix, where C is the number of retained

EEG channels. To facilitate subsequent classification, low-

dimensional features were extracted from the input data using

a combination of classwise principal component analysis [14]

and approximate information discriminant analysis [15]. This

yielded a nonlinear transformation (mapping) from the 12×
C data space into a one-dimensional (1D) feature space.

Subsequently, these 1D spatio-spectral features, f⋆, were

inputted into a Bayesian classifier:

Class =

{

Idle, if P (I|f⋆) > P (G|f⋆)

Grasp, otherwise
(1)

where P (I|f⋆) and P (G|f⋆) are the posterior probabilities

of idling and grasping classes given the observed feature,

f⋆, respectively. The classification accuracy of the Bayesian

classifier 1 was then assessed by performing 5 runs of

stratified 10-fold cross-validation (CV) [16]. The parameters

of the feature extraction mapping and the classifier, referred

to as the prediction model, were saved for real-time EEG

classification during online evaluation.

D. Online Signal Analysis & BCI-Hand Orthosis Evaluation

For online operation, 0.75 sec overlapping EEG segments

were acquired in real time with a refresh rate of 2 Hz.

These segments were then processed using the same method

described in Section II-C. The posterior probabilities of idle

and grasping classes were then calculated based on these

salient EEG features and were used to control the grasping

and extension of the hand orthosis. Prior to obtaining control

of the orthosis, a short calibration procedure was performed

to determine the posterior probability thresholds such that

false state transitions during hand orthosis operation are

minimized. To accomplish this, the BCI system was set

to run in the online mode while the orthosis was turned

off. The subject was then prompted to alternate between

∼20-sec epochs of idling and repetitive hand grasping for

a total of 3 min. Using the prediction model developed in

Section II-C, real-time EEG signal analysis was performed,

and the posterior probabilities of grasping and idling given

data were calculated every 0.5 sec. Fig. 2 shows the em-

pirical distributions of these probabilities. Using the median

(50% quartile), two thresholds were chosen based on these

histograms: one to trigger the transition from grasping to

idle state and another to trigger the transition from idle

to grasping state. This choice of threshold was found to

yield a good compromise between false alarms and omission

errors. Finally, to facilitate smooth online BCI operation,

these probabilities were averaged over a 1.5 sec period, and

the average posterior probabilities were compared to these

thresholds in order to control the hand orthosis.

Fig. 2. (Top) Histogram of the posterior probability of grasping (G) given
that the underlying action is idling (I). (Bottom) Histogram of the posterior
probability of grasping (G) given that the underlying action is grasping. The
dashed lines mark the 25%, 50%, and 75% quartiles.

To evaluate the performance of the BCI-hand orthosis sys-

tem, the subject was instructed via textual cues to perform 10

alternating 10-sec epochs of right hand idling and repetitive

grasping to induce BCI-mediated orthosis grasping of the

left hand. Then, readings from two electrogoniometers were

used to compare voluntary right hand grasping and BCI-

hand orthosis mediated left hand grasping. The goniometer

traces were smoothed using a 100-msec Gaussian window

and thresholds were set manually to determine grasping and

idling epochs. A time series, x, describing voluntary right

hand movements was then defined as:

x[i] =

{

0, if i ∈ I

1, if i ∈ G
(2)

where i = 1, 2 · · · , N , and N is the number of samples in

the goniometer trace. A time series, y, describing BCI-hand

orthosis mediated grasping, was defined in a similar manner.

The normalized cross-covariance function between the time

series x and y was then calculated as:

ρ(m) =

∑

N

i=1
(x[i+m]− x̄) (y[i]− ȳ)

√

∑

N

i=1
(x[i]− x̄)

2

√

∑

N

i=1
(y[i]− ȳ)

2

(3)

where m ∈ [−N + 1, N − 1] is the lag between the se-

quences x and y, and x̄ and ȳ are the sample means of the

two sequences, respectively. The latency between voluntary

and BCI-hand orthosis mediated left hand grasping was
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then found as the lag with maximal cross-covariance, i.e.

m⋆ = argmaxm ρ(m). Subsequently, the temporal correla-

tion between x and y was found to be: ρ⋆ = ρ(m⋆). In

addition to these measures, the performance was quantified

by calculating the number of false alarms and omissions.

An omission was defined as the absence of a BCI-hand

orthosis mediated grasping epoch within the duration of any

voluntary hand grasping epoch. Similarly, the initiation of a

BCI-hand orthosis mediated hand-grasping epoch within any

idling epoch was considered a false alarm.

III. RESULTS AND DISCUSSION

A. Offline Performances

Fig. 3. Spatio-spectral feature extraction maps at high β-band (18-20 Hz).
Values close to +1 and -1 indicate brain areas of importance for classifying
EEG data into idling and grasping classes. Since feature extraction mapping
is piecewise linear, there are two maps; one adapted to idling class (left)
and one adapted to grasping class (right).

By performing 10-fold CV, an offline classification accu-

racy of 95.3%± 0.6% (p < 3.0866× 10−25) was achieved.

Analysis of the prediction model showed that the EEG

power changes in the β-band observed over the electrode

C3 were the most informative features for classification

(Fig. 3). This electrode likely corresponds to the right hand

motor representation area, located on the lateral left primary

motor cortex. This finding is consistent with the anatomy of

motor homunculus, and similar spatial locations and spectral

features were implicated in related studies [9], [11].

B. Online Performances

To assess the feasibility of integrating BCI and orthosis

systems, its function was evaluated online, where the subject

alternated between 10 ten-sec epochs of right hand idling and

repetitive grasping. In response to hand grasping epochs, a

BCI-mediated orthosis grasping and extension were typically

induced (Fig. 4). Performance was quantified by calculating

the temporal correlation between the right hand movement

epochs and the corresponding BCI-mediated orthosis move-

ment epochs, the average lag between these epochs, and the

number of false alarms and omissions.

After a total of 5 online sessions, the average lag between

the epochs of voluntary grasping/idling and BCI-hand or-

thosis grasping/idling was 2.24 ± 0.19 sec. The temporal

correlation between these epochs calculated at each online

session’s corresponding lag value averaged to 0.778 ± 0.06
(Table I). Also, the average number of false alarms and

omissions was determined to be 0.4± 0.89 and 1.8± 1.10,

Fig. 4. Blue traces mark the 10 epochs of repetitive right hand grasping,
whereas gaps indicate idling epochs. Red traces mark the epochs of BCI-
mediated orthosis grasping of the left hand. Both traces were estimated as
described in Section II-D.

respectively. Finally, the best online performance (Session 5)

resulted in no false alarms or omissions and a lag time of

2.5 sec with a temporal correlation of 0.84.

TABLE I

PERFORMANCES OVER THE 5 ONLINE SESSIONS. THE ASTERISK CORRESPONDS TO

THE ONLINE SESSION WITH THE BEST PERFORMANCE (SHOWN IN FIG. 4).

Session Lag (sec) ρ OM FA

1 2.1 0.69 2 2
2 2.0 0.79 0 2
3 2.3 0.80 0 2
4 2.3 0.77 0 3

5∗ 2.5 0.84 0 0

Average 2.24± 0.20 0.78± 0.06 0.40± 0.89 1.8± 1.10

Since stroke patients with hand motor impairments are

unable to execute full grasping movement, we tested the

performance of the above system by utilizing repetitive

micromovements (simultaneous 5◦-10◦ flexion of all fingers).

This experiment was also implemented using the contralat-

eral control paradigm and was performed with the same

able-bodied subject. Analysis of a single online session

(Fig. 5) yielded the lag of 1.889 sec between the epochs

of right hand micromovement/idling and BCI-hand orthosis

grasping/idling. In addition, the temporal correlation between

these epochs calculated at this lag value was 0.772. Finally,

note that this session had no false alarms or omissions.

Fig. 5. The same as in Fig. 4, except that subject performed repetitive
micromovements of the right hand.

C. Discussion

These results demonstrate that continuous BCI-mediated

orthosis grasping/idling could be reliably controlled using

a contralateral hand-grasping paradigm. The high offline

classification accuracy (>95%) translated into the subject

being able to achieve continuous online control of the

interface. Moreover, only a single training session (20 min)

was required to develop a reliable prediction model for

feature extraction and classification of EEG signals. Besides

cross-validation, the validity of this model was confirmed by

the feature extraction mapping (Fig. 3), which is consistent

with the anatomical organization of the motor cortex. This

result is even more impressive given that the design of the
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prediction model is entirely data driven without imposing

any anatomical constraints. Finally, the model was validated

online, first through a calibration procedure, which showed a

clear separation of posterior probabilities (Fig. 2), followed

by real-time online control (Figs. 4 and 5). In particular,

the high correlation between the offline performance and the

real-time online performances indicates that no overfitting

occurred in the design of the prediction model.

Due to inability to resolve voluntary and BCI-mediated

orthosis movements in able-bodied individuals, the present

study used contralateral control paradigm. To apply this

technology to the neurorehabilitation of stroke survivors with

hand weakness, an ipsilateral control paradigm should be

used. Through the use of attempted or partially executed

movements of the affected hand, followed by the activation

of the orthosis, post-stroke individuals may be able to restore

hand grasping behavior in an intuitive manner and use this

system as an automated physiotherapeutic rehabilitation tool.

In addition to an ipsilateral control paradigm, the adoption

of this technology to neurorehabilitation applications will

most likely require the elimination of the latency between

the onset of voluntary or attempted movement/idling and

BCI-hand orthosis mediated movement/idling. The observed

latency is partly caused by the averaging of the posterior

probability over a 1.5 sec period (see Section II-D) during

online operation. Also, there is a natural delay in the event-

related desynchronization/resynchronization of EEG senso-

rimotor rhythms [17] which are concomitant with the ex-

ecution/cessation of movements, respectively. For example,

the peak desynchronization was found to occur ∼1 sec after

initiation [17] or imagination [18] of movements, which may

be responsible for the delay in the BCI-hand orthosis system

response. A potential solution to this problem is to reduce the

posterior probability averaging window (albeit at the expense

of increase the false alarm and omission rates) or to use our

data-driven algorithm to search for relevant EEG features in

the time domain, such as readiness potentials, which may be

observed as early as 1 sec before initiation of a self-paced

motor behavior [19]. However, further research is required

to implement these solutions, as both changes in the training

paradigm and signal-processing methodology will need to

be implemented such that the novel EEG features associated

with movement intention can be reliably detected.

Finally, the post-stroke brain is expected have undergone

cortical reorganization that may result in EEG signal features

that deviate from classical features underlying hand-grasping

behavior. The data-driven feature extraction method demon-

strated here can find optimal combinations of EEG signal

features directly associated with hand-grasping behavior in

the post-stroke cortex. This method may facilitate reliable

BCI operation of the orthosis and in turn, help reinforce

connections between the post-stroke brain areas underlying

hand grasping and the corresponding spinal motor pools.

IV. CONCLUSIONS

This study demonstrates that the integration of a non-

invasive EEG-based BCI system with a hand orthosis is

feasible. With minimal training, an able-bodied subject was

able to use contralateral control paradigm to continuously

operate BCI-hand orthosis in real time. Adoption of this

technology to neurorehabilitation of stroke survivors with

hand motor impairments will require further development

including testing of the system’s function under ipsilateral

control paradigm and minimization of the latency between

movement intentions and hand-orthosis response.
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