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Abstract— Motor rehabilitation using brain-computer inter-
face (BCI) systems may facilitate functional recovery in individ-
uals after stroke or spinal cord injury. Nevertheless, these sys-
tems are typically ill-suited for widespread adoption due to their
size, cost, and complexity. A small, portable, and extremely cost-
efficient (<$200) BCI system was created using a custom EEG
amplifier array, a commercial microcontroller and touchscreen.
The system’s performance was tested using a movement-related
task in 3 able-bodied subjects with minimal previous BCI
experience. The custom amplifier array performed similarly to
a commercial array (maximum of ρ=0.85). The BCI’s average
decoding accuracy across subjects (76.9%) was comparable to
that of full-size BCI systems. Small, portable, and inexpensive
BCI systems like this one will facilitate the use of BCI-based
movement rehabilitation in the stroke and spinal cord injury
populations.

I. INTRODUCTION

Millions of individuals in the US are afflicted by motor
impairments caused by stroke and spinal cord injury (SCI)
[1], [2], [3], [4], [5]. These impairments can lead to seri-
ous health problems and lost productivity for the affected
individuals [1], [5]. While motor recovery in stroke and
SCI survivors plateaus after six months post-injury despited
standard rehabilitative therapies [5], [6], [7], recent studies
suggest that the use of brain-computer interfaces (BCIs)
in post-stroke movement therapy (assisted by a robot or
electrical stimulation) may promote motor recovery [8], [9],
[10], [11]. This approach could potentially be applied to
SCI motor rehabilitation, as it has already been shown that
BCIs can be used effectively by subjects with paraplegia and
tetraplegia [14], [15].

While current BCI systems offer robust performance, they
are inappropriate for use outside the clinic or research
laboratory due to their size, cost, and lengthy setup time.
This is problematic, since the general consensus in motor
rehabilitation is that the best therapies are those that can be
done often and at home [16]. For BCIs to be a practical
rehabilitative option, they must be readily available as small,
portable, low-cost systems. These systems must, at least,
consist of electroencephalographic (EEG) amplifiers as well
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as a processing unit that translates these brain signals into
control commands for an output device. While commercial
amplifier systems are available for purchase, they can be
expensive and bulky. Additionally, both commercial and
research amplifiers generally require a desktop or laptop
computer [17], [18], [19] for signal processing. Thus, these
BCI systems are neither small nor truly portable and require
extensive setup. The few research BCI systems that can
utilize an embedded processing unit for real-time BCI use are
expensive, overly complex, or too bulky [20], [21]. In order
to meet our goals (simple, compact, portable, and low-cost),
we designed and tested a BCI system for motor rehabilitation
that utilizes a custom 4-channel EEG amplifier, a commercial
microcontroller, and touchscreen (see Fig. 1).

II. METHODS

A. Hardware Design

A custom 4-channel EEG amplifier (Fig. 2) was designed
and fabricated (Smart-Prototyping, NOA Labs, Kowloon,
Hong Kong) and paired with an Arduino Mega microcon-
troller (Arduino, Ivrea, Italy) and touchscreen with on-board
microSD card (Seeed Studio, Shenzhen, China). Each EEG
channel of the amplifier array consists of 3 stages (instru-
mentation amplifier followed by two operational amplifiers).
This cascade includes active high-pass (corner frequency of
1.59 Hz) and low-pass (corner frequencies of 33.86 Hz and
32.88 Hz respectively) filters. The minimum total gain of the
amplifier is 26400×, with >80 dB common mode rejection
ratio. Further noise reduction is achieved using a driven
right leg (DRL) circuit and by exploiting active shielding
on the EEG cap. The number of channels was chosen to
be 4 to reduce the board size and production costs without
compromising performance. Unpublished analysis of stroke
and SCI data from previous studies [9], [14] suggests that
BCI performance does not deteriorate significantly until <4
channels are used. The entire amplifier array was imple-
mented as a shield for the Arduino Mega microcontroller
board to facilitate easy integration of the components. A
portable 5V battery was used to power the system. The entire
assembly (see Fig. 1) is small (7.5×10×3 cm) and costs less
than $200 (excluding the EEG cap).

To validate the fidelity of the custom amplifier array, EEG
was simultaneously amplified and recorded from three able-
bodied subjects using the custom array and a commercial
EEG amplifier array (BIOPAC Systems, Goleta, CA). Sub-
jects were fitted with a commercial 64-electrode EEG cap,
and impedances were reduced to <10 kOhm for 6 electrodes



Fig. 1. A picture of our BCI system with an EEG cap and a portable 5V battery. The BCI system and battery cost <$200. The touchscreen, with
built-in microSD slot, snaps onto a shield with the custom amplifier array which snaps onto a commercial microcontroller. EEG signals from the subject
are amplified by the custom array and sent directly to the microcontroller for processing, BCI decoding, and effector output.

(Cz, CPz, C1, and C2, referenced to AFz, with DRL feedback
to M2) using conductive gel. Note that the electrodes used
were expected to cover the foot motor areas in able-bodied
individuals. EEG signals from Cz (referenced to AFz) were
amplified using both the custom and commercial systems,
and then recorded at 4 kHz by a commercial MP150 system
(BIOPAC Systems, Goleta, CA) over a period of 50 s.
Signals amplified by the commercial system were subjected
to software filters using the same parameters as the those of
the custom array. Finally, the Pearson correlation between
signals from both systems was calculated.

B. Signal Acquisition

Using the same EEG cap setup as above, subjects un-
derwent a 4-min training session, in which they followed
alternating 6 s-long cues on the touchscreen to relax or
dorsiflex their right foot. EEG signals were sampled at 256
Hz per channel by the microcontroller. Using a custom,
highly-optimized C++ program, two bandpass filters were
then applied in software to this input to resolve the α (8-
12 Hz) and β (13-30 Hz) band signals. The average power
of the 8 output signals (4 channels x 2 frequency bands)
during the last 5 s of each cue was calculated and stored
on the microSD card. This training data (8 dimensions × 40
epochs) was used to create a classifier that could distinguish
relaxing from dorsiflexing using only EEG (modeled closely
on the classifier from [22]).

C. Classifier Design

First, principal component analysis was used to reduce the
number of dimensions of the training data while ensuring
that ≥99.7% of the overall variance was still explained.
The resulting lower dimensional data was then subjected to
linear discriminant analysis to find the 1-D projection that
maximized class separability. The data in this optimal 1-D
subspace was then used to find the parameters for a naive
Bayesian classifier that calculates the posterior probability
of dorsiflexing (PD). These transformations and classifier
parameters were stored on the microSD card for subsequent
real-time BCI operation. Ten-fold cross-validation was also
run on-board to estimate the accuracy of the classifier.

A binary state machine using two thresholds, T1 and T2,
translated PD into one of two states: relaxing or dorsiflexing.
If PD < T1, the system predicted the relaxed state; if PD >
T2, the system predicted the dorsiflexed state. Otherwise, the
system defaulted to the last predicted state. These thresholds
were determined using a 1-min calibration session, where PD

was calculated every 0.5 s while subjects followed alternating
6-sec cues to idle or dorsiflex their right foot. Using a grid
search, T1 and T2 were chosen such that the accuracy of the
predicted states was maximized.

D. Real-Time BCI Testing

Subjects participated in 4-6 trials (120 s each) where
they followed alternating 6-s cues to relax or dorsiflex their
foot. The BCI system analyzed their EEG signals using
the subject-specific classifier generated above to predict the



Fig. 2. The schematic of a single channel from the custom amplifier array. Note presence of 3 amplifier stages with high-pass and low-pass filters.
Environmental noise is further attenuated using a DRL circuit and active shielding. The 4-channel system was implemented as a shield for a microcrontroller.

Fig. 3. A 3-s example of EEG data from S1 when amplified with the
custom array (blue) and a commercial array (orange).

subject’s movement state (relaxed or dorsiflexed) every 0.5
s. In order to prevent noisy state transitions, the mode of the
last 3 predictions determined the final BCI output. Visual
feedback was provided in the form of an LED that was
controlled by the BCI output. The performance of the system
was assessed as the percentage of correctly identified outputs.

III. RESULTS

Three able-bodied subjects participated in the study. The
correlation between the custom and commercial amplifiers
during a 50 s recording for S1, S2, and S3 was 0.85, 0.84,
and 0.73 respectively. A representative 3-s example of EEG
from S1 amplified by both systems is provided in Fig. 3.
BCI decoding results for S1-3 are provided in Table I. In
addition, a representative example of S1’s training data in
the original 8-D and the final 1-D subspace is provided in
Fig. 4. Note that even with the limited processing capacity
of an Arduino Mega, classifier generation, cross-validation,
and threshold calibration each took <20 s to perform.

TABLE I
SUMMARY OF BCI TESTING RESULTS FOR THREE ABLE-BODIED

SUBJECTS.

Subject Cross-Validation Number of Average Trial
Accuracy Trials Completed Accuracy

S1 97.5% 4 78.9%
S2 95% 6 78.8%
S3 100% 5 73.0%

IV. DISCUSSION AND CONCLUSIONS

A custom amplifier array was designed, manufactured, and
paired with a commercial microcontroller and touchscreen
to create a BCI system that decoded movement-related
EEG changes. Despite the disparate characteristics of the
hardware and software filters used, the custom amplifier
array performed similarly to its more expensive commercial
counterpart. Moreover, it produced clean EEG signals that
enabled acceptable BCI decoding in 3 inexperienced able-
bodied subjects. The observed real-time decoding accuracies
(76.9% on average) were comparable to previous studies in
able-bodied individuals [23] and stroke survivors [9] that
utilized full-size BCI systems with longer training times
and significantly more EEG channels. Any reduction in
the number of EEG channels used also reduces setup time
and makes BCI therapy more appropriate for frequent, at-
home use. Specifically, the setup time for this BCI system
was <10 mins for all subjects. Additionally, the decoding
accuracies reported here do not consider the system’s lag
(≥1 s) due to smoothing across the last 3 predicted BCI
states. Note that a large amount of environmental noise was
present during S3’s training and subsequent trials. This may
explain the decreased correlation between the custom and
commercial amplifier arrays and the decreased BCI decoding



Fig. 4. Left: The original 8-D training data collected from S3 during relaxing and dorsiflexing epochs and stored on the microSD card. Right: The
training data after it was projected onto the most-separable 1-D subspace. The mean (horizontal bar) and standard deviation (vertical bars) for each state
is provided. Note that the training data from the relaxed and dorsiflexed states do not overlap in this 1-D subspace.

performance for this subject.
In summary, we demonstrated that a small, simple, and

inexpensive BCI system could accurately decode the move-
ment state of 3 able-bodied users from EEG signals. We
expect that this system can be used easily and effectively
by both stroke and SCI survivors without significant loss of
performance compared to expensive, full-size BCIs. Addi-
tionally, our BCI system can be paired with portable and
cost-efficient end effectors, such as commercial functional
electrical stimulators, to produce a simple and accessible
BCI-based movement therapy for stroke and SCI survivors.
Future directions include testing the system with motor-
imagery-based control strategies, as well as in people with
stroke and spinal cord injury.
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