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Abstract—Objective: Conventional brain-computer inter-7

faces (BCIs) are often expensive, complex to operate, and8

lack portability, which confines their use to laboratory set-9

tings. Portable, inexpensive BCIs can mitigate these prob-10

lems, but it remains unclear whether their low-cost design11

compromises their performance. Therefore, we developed a12

portable, low-cost BCI and compared its performance to that13

of a conventional BCI. Methods: The BCI was assembled by14

integrating a custom electroencephalogram (EEG) amplifier15

with an open-source microcontroller and a touchscreen.16

The function of the amplifier was first validated against a17

commercial bioamplifier, followed by a head-to-head com-18

parison between the custom BCI (using four EEG chan-19

nels) and a conventional 32-channel BCI. Specifically, five20

able-bodied subjects were cued to alternate between hand21

opening/closing and remaining motionless while the BCI de-22

coded their movement state in real time and provided visual23

feedback through a light emitting diode. Subjects repeated24

the above task for a total of 10 trials, and were unaware25

of which system was being used. The performance in each26

trial was defined as the temporal correlation between the27

cues and the decoded states. Results: The EEG data simul-28

taneously acquired with the custom and commercial ampli-29

fiers were visually similar and highly correlated (ρ = 0.79).30

The decoding performances of the custom and conventional31

BCIs averaged across trials and subjects were 0.70 ± 0.1232

and 0.68 ± 0.10, respectively, and were not significantly dif-33

ferent. Conclusion: The performance of our portable, low-34

cost BCI is comparable to that of the conventional BCIs.35
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Significance: Platforms, such as the one developed here, 36

are suitable for BCI applications outside of a laboratory. 37

Index Terms—Biomedical amplifiers, brain-computer in- 38

terfaces, embedded software, microcontrollers, mobile 39

computing, neurofeedback. 40

I. INTRODUCTION 41

B
RAIN-COMPUTER interface (BCI) systems have been 42

designed for diverse applications, such as smart living, 43

entertainment, and neuroprostheses. Recent studies have also 44

examined whether BCIs can facilitate neurorehabilitation af- 45

ter neurological injuries by improving residual motor function. 46

However, these studies often employ conventional BCIs that 47

rely on expensive commercial amplifier arrays and bulky com- 48

puters (e.g. [1]–[5]). These factors inevitably drive up the cost, 49

complexity, and setup time of BCI systems, while reducing their 50

portability. Consequently, these BCI systems are not ideal for 51

at-home use by the community. 52

One way to decrease the setup time associated with conven- 53

tional BCIs is to reduce the number of EEG channels. Prior 54

studies have demonstrated that EEG-based motor BCIs could 55

be successfully operated with as few as 1 channel [6], although 56

some applications may require at least 8 channels [7]. Reducing 57

the number of channels in a cost-effective way requires the 58

replacement of commercial bioamplifiers (typically with 59

dozens of channels) with custom, low-channel-count amplifier 60

arrays. Similarly, further enhancement of portability and cost 61

reduction could be achieved by replacing full-size computers 62

in conventional BCIs with low-cost embedded systems. These 63

strategies have been employed in several studies, where custom 64

portable BCIs were developed for applications ranging from 65

drowsiness detection [8], [9], smart living environments [10], 66

and multimedia navigation [11], to prosthesis control [12] and 67

motor rehabilitation [13]. However, reducing a BCI’s bulkiness, 68

cost, and complexity in this manner may consequently decrease 69

its decoding performance. Many of the above studies compared 70

their decoding performance to previous work, but, to date, no 71

head-to-head performance comparison between portable, cost 72

effective BCIs and conventional BCIs has been reported in 73

the literature. Maintaining a high decoding accuracy is critical 74

in applications such as drowsiness detection and prosthesis 75

control. 76

0018-9294 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Top Left: Exploded view of the individual components of the custom BCI system. Top right: The fully assembled custom BCI system
connected to a handheld battery and EEG cap. Bottom: Graphical user interface navigation map for operating the custom BCI system. Note the
simple and straightforward interface design.

In this study, we developed a portable, low-cost BCI sys-77

tem based on [13], and then performed a head-to-head com-78

parison of its decoding capability against that of a conven-79

tional BCI system. Our findings demonstrate that there need80

not be a trade-off between decoding performance and portabil-81

ity, cost, and simplicity. This suggests that portable and low-82

cost custom systems, such as the one developed here, may83

be ideally suited for BCI applications outside of a laboratory84

setting.85

II. METHODS 86

A. Overview 87

A low-cost, embedded BCI system was developed by integrat- 88

ing a custom EEG amplifier and a commercial microcontroller 89

unit (MCU) with a touchscreen (see Fig. 1). Custom software 90

was developed and uploaded to the MCU to control all facets 91

of the system’s operation. The real-time decoding performance 92

of the custom BCI was compared to that of a conventional BCI 93
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Fig. 2. Circuit diagram for each channel of the custom amplifier array.
The mid-level VC C /2 is connected to a bias electrode as well as to all
the electrodes’ active shielding.

system in able-bodied subjects. Both BCI systems were trained94

to recognize, from EEG, when a subject was opening/closing95

their right hand or remaining motionless. The subject received96

feedback in the form of a red light-emitting diode (LED) that97

was turned on when hand movement was decoded, and turned98

off when idling was decoded. The correlation between cues and99

decoded states for each trial was calculated and used to deter-100

mine whether the custom BCI’s performance was significantly101

inferior to that of the conventional BCI.102

B. Hardware103

The custom BCI system consisted of 3 main hardware com-104

ponents: an 8-channel EEG amplifier array (details below), an105

open-source Arduino Due MCU (Arduino, Ivrea, Italy), and an106

LED touchscreen with integrated micro SD card slot (Adafruit107

Industries, New York, NY). The entire system was ∼13 × 9 ×108

3 cm3 in size, and consumed 1 W of power during normal opera-109

tion. This enabled it to be powered by a rechargeable 5 V battery.110

Each channel of the EEG amplifier array (see Fig. 2) consisted111

of a cascade of one instrumentation amplifier (Texas Instru-112

ment INA128, Dallas, TX) followed by two operational ampli-113

fiers (Texas Instrument OPA 4241) to achieve a total of gain of114

>89 dB with >80 dB common mode rejection ratio (CMRR).115

Active low-pass and high-pass filters provided a banded re-116

sponse between 1.6-32.9 Hz. The amplifier array circuit was117

implemented on a printed circuit board that interfaced with the118

MCU and touchscreen as well as with the EEG electrodes. The119

MCU’s ADC unit had a resolution of 12 bits.120

The amplifier array was empirically validated by comparing121

its output to that of a commercial amplifier system (EEG100C,122

BIOPAC Systems, Goleta, CA) with a 1–35 Hz banded response.123

Specifically, one EEG channel derived by referencing elec-124

trode Cz to AFz (nomenclature consistent with the international125

10–10 EEG standard [14]) was simultaneously amplified by126

both the custom and commercial amplifiers. The output of each127

amplifier was acquired simultaneously at 250 Hz by a commer-128

cial data acquisition system (MP150, BIOPAC Systems, Goleta,129

CA) over the course of 1 min. The gain of EEG100C was ∼86130

dB with 110 dB CMRR, and the MP150’s ADC resolution was131

TABLE I
COST BREAKDOWN OF THE CUSTOM AND CONVENTIONAL BCI SYSTEMS.

Component Custom BCI Conventional BCI

EEG Amplifier ∼$210 ∼$22,500

(∼$26.25/channel) (∼$703.13/channel)

Computer ∼$65 ∼$1,500

Display/Human Interface ∼$35 ∼$200

Total ∼$310 ∼$24,200

The Cost of the Custom BCI’s 8-Channel EEG Amplifier Includes PCB

Manufacturing, Assembly, and Components.

The Cost of the Custom BCI’s Computer Includes the Cost of the MCU,

Battery, and MicroSD Card.

The Cost of the Conventional BCI System Does not Include the Cost of

the Separate Data Acquisition System for Aligning the EEG and Cues.

12 bits. Different software filters were applied to the data from 132

the custom and commercial amplifiers to account for their dif- 133

ferent hardware filter settings. Finally, the lag-optimized corre- 134

lation coefficient (Pearson) between the signals was calculated. 135

The conventional BCI system has been used extensively in 136

previous studies [15], [16], and consisted of a commercial 32- 137

channel EEG amplifier (NeXus-32, Mind Media, Netherlands), 138

a desktop computer, and the MP150 data acquisition system 139

for aligning the EEG and cue signals. The gain of the NeXus- 140

32 amplifier was ∼26 dB with >90 dB CMRR, and its ADC 141

resolution was 22 bits. 142

A cost breakdown of both BCI systems (excluding the EEG 143

cap) is shown in Table I. The cost of the custom BCI was 144

<1/20th of the cost of an equivalent 8-channel version of the 145

conventional system (using per channel costs). The conventional 146

system’s amplifier, however, has medical CE and FDA certifi- 147

cations, which may account for its high cost. 148

C. Software 149

Specialized software was written in C++ and uploaded to 150

the custom BCI’s MCU to render the graphical user interface 151

(GUI) and perform the following BCI functions: 1. EEG train- 152

ing data acquisition, 2. generation of the BCI decoding model, 153

3. real-time decoding to control an output device. The simple 154

GUI is depicted in the bottom panel of Fig. 1. The effector out- 155

put can be manually controlled on the home screen. In training 156

mode, the screen alternates between displaying “GO” (during 157

movement epochs) and a blank screen (during idling epochs), 158

and then displays the accuracy of the generated BCI decoding 159

model. Lastly, before the end of training, a small number of 160

calibration cues (“GO”/blank screen) are presented to the user. 161

Back at the home screen, the user can enter calibration mode 162

to manually select thresholds for the decoding model (based 163

on histograms from data collected during the calibration cues). 164

During real-time BCI decoding, the user is presented with the 165

same “GO”/blank screen cues as before and their decoded brain 166

state is used to control the effector output. The software devel- 167

oped to operate the BCI, including the GUI, is publicly available 168

at https://github.com/cbmspc/PortableBCI. 169
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Fig. 3. Experimental procedure for the head-to-head comparison of the custom and conventional BCI, depicting the order of each system’s training,
decoding model generation (Dec. Mod.), binary state machine calibration (Cal.), and real-time decoding trials. The entire procedure lasted around
1.5 h.

Fig. 4. Electrode locations for the international 10–10 EEG system.
The electrodes used by the conventional BCI are colored grey, while
those used by the custom BCI are outlined in red.

The conventional BCI system utilized custom Matlab scripts170

to perform the same functions as the custom BCI system. These171

were originally described in [15].172

D. Subject Recruitment173

The use of human subjects was approved by the University of174

California, Irvine Institutional Review Board. Able-bodied in-175

dividuals with no history of neurological disease were recruited176

for the study.177

E. Setup178

The general experimental procedure for each subject is de-179

picted in Fig. 3. Subjects were first fitted with and EEG180

cap (Waveguard, ANT-Neuro, Enschede, Netherlands) with 64181

actively-shielded electrodes. Only a subset of 33 electrodes was182

used (see Fig. 4), and their impedances were reduced to <10 kΩ183

using conductive gel. The conventional BCI utilized 32 chan-184

nels (32 electrodes all referenced to AFz), while the custom BCI185

used only 4 channels (C1, C3, C5, and CP3, all referenced to186

AFz). Specifically, AFz was the V-electrode in Fig. 2 for ev-187

ery channel of the custom BCI. In addition, the custom BCI188

used a bias electrode (Fz) during testing. For subject S3, FC3189

was used instead of C5 due to excessive noise in that channel.190

The 4 channels used by the custom BCI were chosen based on191

their proximity to the expected hand representation area of the192

primary motor cortex. Although the custom BCI could accom- 193

modate up to 8 channels, preliminary post-hoc analysis of foot 194

movement data from a previous BCI study [17] demonstrated no 195

significant loss of decoding accuracy when only ∼ 4 (albeit well 196

chosen) EEG channels were used instead of all 32. In addition, 197

our results from [13] suggested that high decoding performance 198

was attainable with only 4 EEG channels. Therefore, we used 199

only 4 of the 8 channels for this study. 200

F. BCI Training 201

In order to train the BCI systems to distinguish the pres- 202

ence/absence of hand movements, users followed verbal cues to 203

alternate between repetitively opening/closing their right hand 204

for 6 s (“move” epochs) and remaining motionless for 6 s (“idle” 205

epochs). EEG data from 4 (custom BCI) or 32 (conventional 206

BCI) channels were acquired at 240 Hz (custom BCI) or 256 Hz 207

(conventional BCI) per channel. The sampling rate for the cus- 208

tom BCI was chosen simply because it was close to 256 and 209

produced many software parameters that were divisible by 10, 210

and changing it to 256 Hz did not affect decoding performance. 211

Each channel’s EEG data were digitally filtered either into the α 212

(8–13 Hz) and β (13–30 Hz) physiological bands by the custom 213

BCI or into 2 Hz bands covering the same 8–30 Hz range by 214

the conventional BCI. The custom BCI utilized the entire α and 215

β bands, instead of smaller frequency bands, due to its limited 216

memory space (96 kB) and to simplify the subsequent decoding 217

steps. The average power at each channel and frequency band 218

was calculated for every 6-s-long “move” and “idle” epoch. 219

To prevent movement state transitions from affecting the sub- 220

sequent decoding models, the custom and conventional BCIs 221

discarded the first 1-s of EEG data from each epoch. The con- 222

ventional BCI also discarded the last 1-s of EEG data from each 223

epoch. However, doing the same for the custom BCI had no 224

impact on its decoding performance, and therefore, it was not 225

implemented in this study. 226

For each subject, the custom BCI was trained first, followed 227

by the conventional BCI (see Fig. 3). To minimize the total 228

time that each subject spent training, the training sessions for 229

the custom BCI lasted only 5 min. However, the training ses- 230

sions for the conventional BCI lasted 10 min and could not be 231

reasonably reduced further because of the high dimensional- 232

ity of its data (32 EEG channels × 11 frequency bands). The 233

custom BCI was trained for 5 min instead of 10 min because 234

it made no difference in its decoding capability during pre- 235

liminary tests. During training, subjects were positioned fac- 236

ing away from the experimenters/BCI systems and were not 237

told of the training time discrepancy in order to blind them to 238

which BCI was being used. The BCI cues were relayed ver- 239
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bally to the subjects by the experimenters, who also performed240

mock typing and mouse clicking (to mimic the sounds of op-241

erating the conventional system) before the use of the custom242

system.243

G. Decoding Model244

The custom BCI extracted hand movement features from its245

8-dimensional EEG training data using linear discriminant anal-246

ysis (LDA) [18], while the conventional BCI first reduced its247

training data’s dimensionality (down from 352) using class-248

wise principal component analysis (CPCA) [19] before ex-249

tracting hand movement features with either LDA or approx-250

imate information discriminant analysis (AIDA) [20]. The con-251

ventional BCI’s initial CPCA step was necessary to perform252

LDA/AIDA. Next, both BCI systems generated a Bayesian253

classifier to calculate the probability of the movement state254

(hand opening/closing) from extracted features (f ), denoted255

as P(M |f). Each system also performed leave-one-out cross-256

validation to predict the accuracy of the decoding model. If the257

cross-validation accuracy was <85%, the subject repeated the258

training for that system. If the accuracy was ≥85%, the sub-259

ject performed an additional 2-min calibration session of cued260

hand opening/closing and idling (in alternating 6-s epochs) with261

that BCI system to provide data for calibrating a binary state262

machine.263

H. State Machine Calibration264

For each BCI system, histograms of P(M |f) from “move”265

and “idle” epochs of the 2-min calibration session were gen-266

erated to calibrate a binary state machine that classified users’267

underlying movement states (“move” or “idle”) from P(M |f).268

Specifically, for each BCI, the values of two thresholds, TM269

and TI (where TM > TI ), were manually selected by the ex-270

perimenters to be used by its state machine as follows. When271

P(M |f) < TI , the state machine entered the “idle” state; when272

P(M |f) > TM , the state machine entered the “move” state;273

when TI < P(M |f) < TM , the state machine remained in its274

previous state. This binary state machine design reduces noisy275

state transitions and alleviates users’ mental workload, and has276

been successfully used before [15], [16]. If a BCI system’s his-277

tograms from “move” and “idle” calibration epochs appeared278

highly similar, the training session for that BCI was repeated.279

I. Real-Time Decoding280

During real-time operation, both the custom and conventional281

BCI systems employed a 0.75 s sliding analysis window (0.25 s282

overlap) for determining P(M |f) from the users’ EEG. To fur-283

ther prevent noisy state transitions, the posterior probabilities284

over the most recent 1.5 s of EEG data (6 values) were aver-285

aged to generate P(M |f). P(M |f) was used by the systems’286

state machine to decode users’ underlying movement state every287

0.25 s. This decoded state was used by each system to control an288

LED which turned on during decoded “move” states and turned289

off during decoded “idle” states.290

Subjects participated in five, 2-min-long trials for each BCI291

system (total of 10 trials). During each trial, subjects followed292

Fig. 5. 3-s example from the 1 min of human EEG data simultaneously
acquired by the custom and commercial amplifiers. Note the high degree
of similarity between the signals.

alternating 6-s cues to open/close their right hand or remain 293

motionless. Subjects were positioned facing away from the ex- 294

perimenters/BCI systems and towards the single LED light that 295

provided real-time visual feedback from both systems. Experi- 296

menters provided verbal cues for subjects to “move” and “idle” 297

based on the computerized cues displayed by each system. In 298

addition, the experimenters performed mock typing and mouse 299

clicking during use of the custom BCI. Subjects were told that 300

the order of the 10 trials was randomized, although the custom 301

and commercial systems were actually used in an alternating 302

fashion (starting with the custom system). The alternating uti- 303

lization of the BCI systems was intended to avoid subject learn- 304

ing or fatigue. For each trial, the performance of the system was 305

assessed as the lag-optimized correlation (Pearson) between the 306

cues and the decoded state. Then, for each subject, a left-sided 307

Mann-Whitney U test (α = 0.05) was performed between the 308

decoding correlations of the custom and conventional BCI. 309

III. RESULTS 310

A. Custom Amplifier Validation 311

EEG (Cz referenced to AFz) from one human subject was si- 312

multaneously passed to both the custom and commercial ampli- 313

fiers. The correlation between the 1-min-long signals acquired 314

from both amplifiers was 0.79. Moreover, both signals appeared 315

visually similar. See Fig. 5 for a representative 3-s example of 316

each amplifier’s output. 317

B. Decoding Performance 318

Five able-bodied subjects (S1-5) gave their informed con- 319

sent to participate in this study. Three of the subjects had prior 320

BCI experience. Anecdotally, the setup time for the custom BCI 321

system required ∼10 minutes, as opposed to ∼30–40 minutes 322

for the conventional BCI system, due to its lower number of 323

channels. All subjects successfully operated both the custom 324

and conventional BCI systems. The overall cross-validation ac- 325

curacy across all subjects was 93.6 ± 4.3 and 96.2 ± 1.8 for 326

the custom and conventional BCI systems, respectively. In the 327

meantime, the custom BCI’s processor was still able to gener- 328

ate the decoding model and perform cross-validation in a timely 329

manner (<1 min for each subject). For each subject, the conven- 330

tional BCI utilized features around C3 in the α and/or β bands, 331

so the 4 channels used by the custom BCI may have been an 332

appropriate choice in these subjects. For example, the average 333

of all S2’s β band features is shown in Fig. 6. 334
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Fig. 6. The average β band features used by the conventional BCI for
decoding S2’s hand movements. Areas in red represent highly weighted
features, while those in blue are less important. As expected, the region
around C3 was important for decoding.

TABLE II
SUBJECT DEMOGRAPHICS AND CROSS-VALIDATION

ACCURACY FOR EACH BCI SYSTEM

Subject Age/ Prior BCI Custom BCI Conventional BCI

Sex Experience Training Accuracy Training Accuracy

S1 23/M N 90% 96%

S2 46/M Y 96% 99%

S3 21/M N 96% 96%

S4 28/M Y 98% 97%

S5 35/M Y 88% 95%

The average lag-optimized correlation between cues and de-335

coded states across all subjects and trials was 0.70 ± 0.12 (av-336

erage lag of 2.22 ± 0.27 s) for the custom BCI and 0.68 ±337

0.10 (average lag of 2.23 ± 0.37 s) for the conventional BCI.338

Training cross-validation accuracies and decoding correlations339

for both systems are provided for each subject in Table II and340

Fig. 7, respectively. No subject demonstrated a significantly341

lower BCI performance with the custom system compared to342

the conventional system.343

IV. DISCUSSION344

This study demonstrates that low-cost, embedded EEG-based345

BCI platforms, such as the one tested here, can achieve similar346

performance to a conventional BCI system with substantially347

more channels and computational resources. Low-cost, easy-348

to-use, standalone systems make BCIs more accessible to re-349

searchers, clinicians, and patients, and increase the feasibility350

of large clinical trials involving BCI use. The small profile and351

minimal power requirements of embedded EEG systems make352

them highly portable, increasing the number of applications in353

which BCIs can be used. Some of these include smart environ-354

Fig. 7. The correlation between cues and the decoded state for each
real-time decoding trial using the custom and conventional (conv.) BCI
systems. For each subject, trials 1–5 are represented by a cross, circle,
square, diamond, and plus sign, respectively. In addition, p-values from
the Mann-Whitney U tests are provided. The performance of the custom
BCI was not significantly inferior (p < 0.05) to the conventional system
in any subject.

ment control, gaming/entertainment, and mobile solutions to 355

neurological deficits, such as BCI-controlled neuroprostheses, 356

wheelchairs, and robotic exoskeletons. It may even be possible 357

in the future to develop fully implantable BCI systems with 358

onboard processing. 359

Although the custom EEG amplifier did not perform identi- 360

cally to a commercial system (0.79 correlation), the custom BCI 361

still achieved high decoding performance. In fact, the decoding 362

performance of both systems was generally higher than what 363

we have previously reported for motor execution tasks in able- 364

bodied [15], [21] and stroke subjects [17] using an equivalent 365

conventional BCI. We believe that the different hardware and 366

software filters used with the custom and commercial amplifiers 367

may have reduced the correlation between the output signals. 368

In particular, the custom amplifier’s output was observed to 369

be contaminated with environmental noise, possibly because its 370

60 Hz notch filter was of lower order than that of the commercial 371

amplifier. 372

Our finding that a low-cost, embedded BCI using only 4 EEG 373

channels can achieve a high decoding performance and does not 374

perform significantly worse than a conventional system is en- 375

couraging, but not wholly unexpected. For example, high BCI 376

decoding performance with few channels has been observed pre- 377

viously [13] and is consistent with previous channel-dropping 378

studies [6], [7]. Although a moderately long decoding delay 379

(∼2 s) was observed for both BCIs in this study, a significant 380

fraction of this delay in both systems may have been caused 381

by the experimenters’ translation of visual computer cues into 382

verbal cues for the subjects. 383
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Custom, embedded BCI platforms, such as the one developed384

in this study, can be highly modifiable. Not only are the software385

libraries readily customizable, but even the system hardware can386

be adapted by community users for a variety of applications.387

For example, with this BCI platform, the bandwidth and gain388

of the custom amplifier array can be changed by adjusting its389

resistive and capacitive components. In addition, surface-mount390

components can replace the large dual-inline packages to fur-391

ther reduce the system’s size. Based on the software execution392

time, the current Arduino Due MCU can tolerate an increase393

in channel number and sampling rate without causing delays394

during its operation. Therefore, this system is even practical for395

applications where higher frequencies (beyond the β band) are396

desired. Lastly, an expensive (∼$2500) EEG cap was used in397

this study out of convenience, but this may not be appropriate for398

community users. Instead, dry electrodes, which offer shorter399

setup time, could be used. However, dry electrodes may still be400

inferior to wet electrodes [22], and in preliminary testing, we401

observed them to be highly sensitive to movement artifacts. A402

great alternative is high quality, individual EEG cup electrodes403

(wet) that are inexpensive (∼$50 each).404

Many portable, reasonably low-cost BCI systems have al-405

ready been developed academically ([23]–[28]) and commer-406

cially (OpenBCI, Emotiv, and NeuroSky). However, these BCI407

systems do not perform onboard signal analysis and decod-408

ing. Yet, if these devices are modified (e.g. paired with a mi-409

crocontroller for decoding), the results of this study suggest410

that they may be suitable for mobile BCI applications and411

could demonstrate similar decoding performance to conven-412

tional BCIs. Wang et al. [29] developed a portable, 4-channel413

BCI that transmitted EEG data to a smartphone for signal414

analysis and decoding. While the system was specifically de-415

signed to decode occipital steady-state visually evoked poten-416

tials (SSVEPs) and is unlikely to work for sensorimotor rhythm417

modulation, its performance may not be inferior to SSVEP-418

based conventional BCIs. Likewise, the BCIs that utilize embed-419

ded processing units for signal analysis in [8]–[11] may perform420

similarly to expensive, full-size, conventional BCIs. However,421

these BCIs rely on commercial DSPs or FPGAs without user-422

friendly open-source development tools, so it may be hard for423

community users to modify them for other BCI applications.424

A. Limitations425

While many BCI systems are intended for use by individuals426

with neuromotor deficits, such as those resulting from stroke or427

spinal cord injury (SCI), only able-bodied subjects participated428

in this study. Thus it is unclear how low-cost, embedded BCI429

systems with few channels will fare against conventional BCIs430

in subjects with neurological disease. In the future, we intend to431

test the functionality of our custom BCI platform against a con-432

ventional system in stroke and SCI populations. We envision that433

systems like this one could be applied for BCI-based at-home434

physiotherapy or mobile neuroprosthetics. In addition, we did435

not explicitly assess the system’s feasibility for use outside of a436

laboratory setting (e.g. at-home) and further studies are required.437

Lastly, the decoding performance in this study focused on a sim-438

ple motor paradigm, i.e. the presence or absence of hand move- 439

ments. However, it is unclear whether these results will gener- 440

alize to more elaborate movement tasks where a higher number 441

of EEG channels and/or complex decoding algorithms may be 442

necessary to maintain sufficiently high BCI performance. 443

V. CONCLUSION 444

Current BCI systems are not practical for use outside re- 445

search laboratories due to their complicated setup/operation, 446

prohibitive costs, and lack of portability. The custom BCI sys- 447

tem tested here utilized 4 EEG channels as well as a low-cost, 448

open-source MCU for decoding, but still performed similarly to 449

a conventional BCI system. The findings of this study indicate 450

that a high number of EEG channels and extensive computa- 451

tional resources are not always necessary for BCI systems to 452

operate with high accuracy, and many of the portable, inexpen- 453

sive academic or hobby-level commercial BCIs may perform 454

similarly to conventional systems. In addition, these platforms 455

are more practical and cost-effective than conventional BCIs for 456

large scale studies, as well as for motor rehabilitation or hobby 457

applications outside of a laboratory setting. 458
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