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Abstract—Empirical Mode decomposition (EMD) is a math-
ematical tool designed to analyze non-stationary, non-linear
stochastic waves. EMD separates a waveform into its
constituent modes of oscillations or intrinsic mode functions
(IMFs) and provides meaningful definitions of instantaneous
frequency, instantaneous energy, mean trends and oscillation
about the mean trends. This study provides a detailed
mathematical analysis of blood flow waveforms in the
porcine left anterior descending artery and aorta using
EMD. Flow data with non-stationary and non-linear char-
acteristics were obtained for several hours using an implanted
wireless biotelemetry device. EMD was validated against
modern numerical techniques of principal component anal-
ysis (PCA) and wavelet analysis by comparing their predicted
mean trends and energy distribution. EMD has an advantage
over both techniques since it combines the strengths of both:
it is adaptive (similar to PCA), and it can define instanta-
neous frequencies (similar to wavelet analysis). Because of
the iterative nature, however, calculations using EMD can be
computationally intensive. Sampling rate reduction was used
to reduce computation time, without significantly effecting
accuracy of IMF calculations. It was found that IMFs
calculated at a sampling rate as low as 20 Hz were not
significantly different (<6%) from those obtained at the
original sampling rate (200 Hz). Our findings suggest that
EMD may be a powerful mathematical tool to characterize
flow waveforms.

Keywords—Fourier analysis, Empirical mode decomposition,
Principal component analysis, Wavelet analysis, Shear stress.

INTRODUCTION

Blood flow is an important determinant of the shear
stress acting on the endothelium surface of the vessel
and exhibits temporal and spatial variation. Flow and
shear stress influence the homeostasis of endothelial
cells, mechanotransduction, tone of blood vessel,
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growth and remodeling of blood vessel wall, and ini-
tiation and development of cardiovascular diseases.
They have been found to play a critical role in ath-
erogenesis™*>*1%2225 with numerous biomechanical
connections to molecular and cellular studies of the
endothelial and vascular smooth muscle cells.”'%!?
Despite these advances, the dynamics of blood flow
remain incompletely understood.

Several mathematical methods may be used to ana-
lyze blood flow. The periodic nature of blood flow
waveforms invites Fourier analysis and Fourier-based
techniques as a first approach. Most Fourier-related
methods have shortcomings, however, due to their
inability to address the nonlinear and nonstationary
properties (the heart rate is a variable parameter) of
blood flow waveforms. Using examples from either
blood pressure or flow data, it can be verified that these
waves vary somewhat in frequency and in shape from
one heartbeat to the next. Since these variations are not
necessarily cyclic, they appear as spurious high fre-
quency components that are difficult to separate from
high frequency noise in the Fourier frequency spec-
trum. Also, when the Fourier method is used to analyze
frequency, time information is lost. In summary, events
may be identified by frequency using Fourier analysis,
but it is impossible to determine the time course of
those events. The windowed or Short-Time Fourier
transform (STFT) was developed to address this
shortcoming. This technique involves application of the
Fourier transform locally to short time segments, or
time windows, instead of globally to the entire data."'
This approach provides both frequency and time
information, but with precision limited by the size of
the time window. Shorter time windows provide greater
resolution of higher frequencies, while longer time
windows improve resolution of lower frequencies.
Hence, for physiologic data, STFT must compromise
between resolving mean trends (lower frequencies) and
resolving oscillations (higher frequencies).
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Current popular numerical techniques such as
principal component analysis (PCA) and wavelet
analysis can handle nonlinear and nonstationary data,
but these and other techniques including the Wigner-
Ville” distribution and the evolutionary spectrum?
have some shortcomings in comparison with Empirical
Mode Decomposition (EMD).'* EMD represents a
departure from the conventional Fourier analysis and
is powerful in its ability to analyze both nonlinear and
non-stationary waveforms. It is not limited by a
dependence on fixed frequencies or fixed time win-
dows, such as with Fourier analysis and STFT. Fur-
thermore, the two criteria for the sifting of intrinsic
mode functions (IMFs) (see Methods) allow for the
application of the Hilbert transform to the IMFs,
leading to a mathematically meaningful definition of
instantaneous frequency.'* The application of EMD to
flow waves in the coronary artery and aorta is explored
in this study.

EMD is a numerical method designed to analyze
non-stationary and non-linear data.'* EMD is used to
parse wave data into characteristic components, or
IMFs. These IMFs describe the modes of oscillation
inherent in a wave. EMD was initially applied to the
study of ocean waves.'? The first application of this
method to biological waves was in the study of blood
pressure waves in rats.'> Recently, it has been used to
study EMG?® and ECG** waves. To our knowledge,
there are no known applications of EMD to blood flow
waves, nor has there been any analysis of blood flow
waves in the awake, free ranging condition.

We recently developed a fully implantable telemetric
system in chronically instrumented awake free ranging
swine for measurement of aortic and coronary pres-
sures and flows.* The measurements were recorded over
several hours or days and flow waveforms were found
to be non-stationary and non-linear stochastic func-
tions. The conventional analyses that assume station-
ary random oscillations are not suitable to analyze the
non-stationary data acquired. In this study, IMFs were
determined for left anterior descending (LAD) artery
and aortic flow velocity data. IMFs were used to derive
mean trends and oscillations about the mean trends.
The results from EMD were compared with principal
component analysis and wavelet analysis as validation.

We found that EMD has several advantages over
conventional methods and provides a powerful tool to
describe flow waveforms with mathematical accuracy.
The major shortcoming of EMD is currently the
computation expense. Analysis of lengthy data sets
(5 h or more at 200 samples/s) requires downsampling
of data in order to achieve acceptable computation
times. The effect of downsampling to 40 samples/s was
found to have insignificant effect on accuracy of the
EMD technique.

METHODS

The flow measurements were made by a recently
developed fully implantable, wireless telemetric system
in awake, free ranging animals.’ Briefly, the telemetry
implant consisted of up to 9 independent measurement
channels: 1 ECG, 1 temperature, 3 pressure (Millar
transducers, Millar Instruments Inc., Houston) and 4
Doppler based flow channels (PZT5-A piezoelectric
transducer, lowa Doppler Products, lowa City). Five
male swine weighing 32 + 3 kg were sedated with
ketamine (20 mg/kg) and atropine (0.05 mg/kg). The
animals were intubated, and anesthesia was induced
with 1-2% isoflurane. An opening was made in the
fourth left lateral intercostal space. A pressure probe
was inserted in the descending aorta to monitor sys-
temic pressure. A Doppler-based ultrasonic blood
velocity flow probe was inserted at the aortic arch,
facing the ascending aorta. Blood flow velocity in the
LAD artery was measured by a Doppler based ultra-
sonic probe secured to the outer wall of the vessel. A
transmitter device connecting all the probes was posi-
tioned 15 cm away from the chest wound and secured
subcutanecously. Measurements from the Doppler and
pressure probes were transmitted wirelessly to a base
station located nearby. Measurements were recorded at
200 samples/s using a data acquisition system (Biopac
Systems, Goleta, CA). The telemetry device was
implanted in five animals and recorded intermittent
data on a daily basis. Continuous recordings exceeding
10 h were only obtained in one animal due to concerns
that extended recordings would significantly reduce
battery life and possibly prevent telemetric measure-
ment at later periods. Telemetry data from a repre-
sentative animal within the first week post-implantation
is reported in this study.

IMFs of the flow waves were determined by an
iterative process called sifting. The details of the sifting
process are described by Huang ef al.,'* and imple-
mentation details are discussed in the Appendix.
Briefly, a flow wave data was fitted with upper and
lower envelope functions. The upper envelope function
was found by fitting the local maxima of the wave with
a cubic spline. The lower envelope function was simi-
larly found by fitting the local minima. The average of
the upper and lower envelope functions was then sub-
tracted from the original wave; i.e., the original wave
was “‘sifted”. The wave resulting from the sifting pro-
cess may be considered an IMF only if two criteria are
met: (1) the wave has a local mean of zero; i.e., its upper
and lower envelopes are symmetric and (2) the total
number of extrema (maxima and minima) differ from
the total number of zero crossings by no more than one.
If the IMF criteria are not met, the wave is iteratively
sifted. Once an IMF was found, it is subtracted from
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the original wave and the resultant wave was sifted to
produce the next IMF. In this manner, each successive
IMF will have fewer oscillations than the preceding
IMF. Hence, the IMFs are generated in increasing
order of smoothness. When sifting is no longer possible,
the result is generally a monotonic signal called a
residual. Consequently, the residual is often interpreted
as the mean trend in the data. Sorting IMFs according
to smoothness is one possible way of ranking. An
alternative sorting method is to rank IMFs according
to their energy content. The details and the rationale for
this approach are given in the Appendix.

The calculations were performed on a Pentium 4
Dual Core 3.0 GHz computer equipped with 3 GB of
RAM. The EMD software used was HHT-DPS version
1.4 provided by NASA. A brute force computation of
IMFs of large data sets is time consuming and can run
for days or weeks. Sampling rate reduction was used to
reduce computation time. To assess the effectiveness of
this strategy, a comparison was made between the
residual wave obtained from sampling rate reduction
and the residual obtained from a brute force compu-
tation. To alleviate the computational burden, a 1-h
subset of LAD blood flow velocity data, acquired at
200 Hz, was used as a reference wave. The sampling
rate of the reference wave was reduced to 100, 40, and
20 Hz. IMFs were determined at each sampling rate,
along with mean trends and oscillations about the mean
trends. The effect of sampling rate on the magnitude
and appearance of the IMFs was determined by com-
paring the residuals obtained at sub-sampled frequen-
cies with those obtained at the original sampling rate.

Decomposition of the data was also carried out
using PCA and wavelet analysis. PCA was performed
by dividing the data into non-overlapping segments
and by removing the mean of the segments. The
covariance matrix of the population of segments was
then calculated. Principal eigenvalues of the covariance
matrix represent the energy of signal modes obtained
by projecting the data to the corresponding eigenvec-
tors (principal components). By design, the signal
modes are uncorrelated, and so their partial sum
approaches the original signal as the number of modes is
increased (similar to the EMD technique). The imple-
mentation details are given in the Appendix and the
analysis was performed with custom-written MAT-
LAB™ (The MathWorks, Inc., Natick, MA) scripts.

Wavelet analysis was performed by applying the
discrete wavelet transform of the family coif5 (MAT-
LAB™ Wavelet Toolbox) to the data. The scales were
ranked according to the total energy carried by the
corresponding wavelet coefficients. Therefore, the sig-
nal was decomposed into constituent modes, obtained
by the inverse transform at these scales. By increasing
the number of scales in the inverse transformation, the

accuracy of signal reconstruction improves (similar to
EMD and PCA). The implementation details are given
in the Appendix.

RESULTS

The time required to compute IMFs was seen to
increase exponentially with increasing size of data. If
we consider only data at the same sampling rate of
40 Hz, it takes approximately 1 s to calculate IMFs for
10-s data, 3 min to process 10-min data, 40 min to
process 1-h data and 48 h to process 10-h data. Hence,
the effect of sampling rate on the accuracy of IMF
calculation was determined. As explained in the pre-
vious section, calculating IMFs from full data was
time-consuming, and therefore a 1-h long subset of
LAD flow data was used. Figure 1 shows the percent
difference in residuals obtained at lower sampling rates
compared to residuals obtained at the original sam-
pling rate of 200 Hz. The differences are within 6%. A
sampling rate reduction as low as 40 Hz can still
reproduce the residuals at higher sampling rates, with a
difference within 3%. This result may be extended to a
24-h data set, where the data may be resampled at
40 Hz to significantly reduce computation time. Simi-
lar results were observed with aortic flow data, but
were not presented in the interest of space.

EMD was performed on 10-h LAD and aortic flow
velocity data down-sampled at 40 Hz. Figure 2a shows
the resulting IMFs and residual obtained for 10-h
LAD flow data. These EMD components were sorted
in decreasing order of energy content for comparison
with PCA and wavelet analysis. To appreciate the
relationships between various signal components and
the original waveform, the insets showing the repre-
sentative 6 s of data are also provided. Note that the
residual (mean trend) exhibits a steady flow increase in
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FIGURE 1. Effect of decreased sampling rate. Percent dif-
ference between subsampled residuals and residuals
obtained at reference sampling frequency (200 Hz) for 1 h of
LAD flow data.
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FIGURE 2. EMD of LAD data. (a) EMD components comprising IMFs and the residual; (b) partial reconstructions (mean trends);
and (c) oscillations around the mean trends of 10-h LAD flow velocity data subsampled at 40 Hz. E is the fraction of total energy
contained in the mode of oscillation or mean trend. Insets correspond to 6 s of data, with the original signal given in gray.

the first 5 h, followed by a steady decrease towards
initial values. Also note that the residual carries 73.3%
of signal’s energy and is by far the most energetic
component. The mean trends and oscillations around
the mean trends (see Appendix for detailed explana-
tion) are shown in Figs. 2b and 2c, respectively. The
4th order mean trend M4 captures 93.2% of the ori-
ginal waveform energy, and provides a very good
reconstruction of the original waveform (see inset).
Consistent with this observation is the appearance of
the oscillation X4, containing mostly high frequency
details of the original wave (inset).

The IMFs of aortic flow velocity data are shown in
Fig. 3a. Note that unlike in the case of LAD flow data,
the residual is not the component with the highest
energy. Rather the mode of oscillations, C1, matching
the frequency of the cardiac cycle is the highest ranking
mode. The residual in this case exhibits roughly a
constant value for the first 5 h followed by a gradual

decrease in the subsequent 5 h. Successive partial
reconstructions and their corresponding oscillations
are given in Figs. 3b and 3c, respectively. While M4
carries only 80.4% of the total signal energy, it nev-
ertheless provides a reasonable approximation of the
original wave (see inset).

Short IMF segments from aortic and LAD data are
compared in Fig. 4a. Their C5 IMF components were
selected for comparison because of their resemblance
to the heartbeat. Figure 4a confirms that the oscilla-
tions in aortic and coronary flow velocities are out of
phase, as expected. A frequency-energy-time plot or
Hilbert spectrum calculated for 5-min LAD flow
velocity data is shown in Fig. 4b. The x-axis is time,
the y-axis is frequency and the intensity corresponds to
the energy of oscillation. It can be inferred that the
dark band (indicated by arrow) near the bottom of
Fig. 4b is the heart rate. The Hilbert spectrum for
aortic data is similar (not shown).
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FIGURE 3. EMD of aortic data. (a) IMFs and the residual; (b) partial reconstructions; and (c) the corresponding oscillations of 10-h
aortic flow velocity data subsampled at 40 Hz. E is the fraction of total energy contained in the mode of oscillation or partial
reconstruction. Insets correspond to 6 s of data, with the original signal given in gray.

PCA of LAD data is shown in Fig. 5. The first 3
principal components, ranked by relative energy con-
tent, are shown in Fig. 5a. Similar to the residual in
EMD analysis, the mean, shown at the bottom of
Fig. 5a, has the highest energy contribution (~73.8%),
but was placed out of order from the principal com-
ponents. It is not a true principal component because it
was subtracted from the original data, before the
principal components were calculated. Figure 5b
shows the energy content of the mean trends, which are
calculated as partial sums of the mean and modes of
oscillation (see Appendix for details). Oscillations
around the mean trends are shown in Fig. 5c. Simi-
larly, PCA of aortic flow velocity data is shown in
Fig. 6. It is interesting to note that the mean with
~18% of energy is the 3rd highest component, which is
quite similar to the results of the EMD analysis (see
Fig. 3 for comparisons). Mean trends and oscillations

around the mean trends are shown in Figs. 6b and 6c¢,
respectively. From the insets, it can be seen that the
most energetic modes of oscillation for both the LAD
and aortic data have frequencies corresponding to the
heart rate (1.6 Hz or 96 bpm).

Wavelet analysis of LAD and aortic data reveal
modes of oscillation similar to those found with PCA.
These modes of oscillation are classified according to
scale, a quantity that is closely related to the frequency
(see Appendix), and are shown in Figs. 7 and 8. The
scales are ordered according to relative energy contri-
bution. Unlike the PCA mean, which was just an
arithmetic mean subtracted from the data before
analysis, the mean component was determined as a
direct result of wavelet analysis, e.g. by reconstructing
the signal at a very coarse scale. Therefore, the wavelet
mean component can be considered a genuine mode of
the signal, much like the residuals in the EMD analysis,
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FIGURE 4. (a) Comparison of the intrinsic mode function C5
of aortic and LAD flow velocities; (b) Hilbert spectrum of 5-min
LAD flow velocity data. Arrow indicates instantaneous fre-
quencies concentrate about the heart rate (1.6 Hz).

and is ranked along with the other components. The
mean component of the LAD data, Cl1, (see Fig. 7) is
the most energetic component, and provides a similar
energy contribution (~74.5%) as the residual in the
EMD analysis (see Fig. 2), and the mean value in the
PCA analysis (see Fig. 5). The mean component of
aortic data, C2, (Fig. 8)is only a secondary component,
and its energy contribution (~19.9%) is similar to those
of the residual (see Fig. 3) and the mean value (see
Fig. 6). This drop in the ranking of the mean trend in
the aortic velocity data may be attributed to the higher
overall mean of LAD velocity (~13 cm/s) compared to
aortic velocity (~6.3 cm/s). Wavelet analysis confirms
that the most energetically significant oscillations are
coupled to the heart rate, in agreement with EMD and
PCA.

A comparison of the mean trends of coronary and
aortic flows obtained through EMD, wavelet analysis
and PCA are shown in Figs. 9a and 9b, respectively.
The mean trend from wavelet analysis of LAD data

(dotted line) is almost identical to the mean trend from
EMD (solid line) as shown in Fig. 9a. Figure 9b shows
deviations between the mean trends of EMD (solid
line) and wavelet analysis (dotted line) of aortic flow
data. In both figures, the PCA mean trend (dashed
line) is a simple arithmetic mean, and is insensitive to
local variations.

One representative period of LAD velocity is
shown in Fig. 10. The corresponding IMFs are shown
in Fig. 11a (left panel), mean trends in Fig. 11b (mid-
dle), and oscillations about mean trends in Fig. 1lc
(right).

DISCUSSION

Data from this study were acquired continuously
for several hours at a time. EMD analysis required
significant computation time, which made it necessary
to employ sampling rate reduction to achieve accept-
able computation times. It was determined that IMFs
calculated at a sampling rate as low as 40 Hz were not
significantly different (<3%) from those obtained at
the original sampling rate (200 Hz). Improvements in
computer processing power in the future will enable
IMF calculation without sampling rate reduction.

Currently, the most widely used technique to ana-
lyze non-stationary data is wavelet analysis. Wavelet
analysis decomposes a flow wave into its constituent
basis functions, called wavelets. Unlike sines and
cosines of Fourier analysis, the wavelets of compact
support are well-suited to analysis of nonstationary
data. This feature allows time-frequency events to be
resolved simultaneously (subject to Heisenberg uncer-
tainty principle). While wavelet analysis provides bet-
ter (more uniform) resolution across frequencies than
does STFT, the resolution is inferior to that of EMD.'*
Another difference between EMD and wavelet analysis
is that EMD gives rise to data dependent representa-
tion basis, whereas wavelet analysis uses a priori cho-
sen set of basis functions. While the results in the
present study were not significantly dependent upon
the choice of wavelet basis (see Appendix), the a priori
chosen wavelet basis may in principle cause a bias, and
represents a potential weakness compared with the
adaptive basis generated by EMD.

Another useful numerical decomposition technique
is the principal component analysis (PCA). Like
EMD, it does not make any assumptions about the
shape of the basis functions, i.e., the basis is data
dependent. Therefore, PCA is fully adaptive as it relies
on the data alone to describe its modes of oscillation. It
is often used for data compression and denoising,
where it extracts the modes (principal components)
that account for most of the variance in the data.
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FIGURE 5. PCA of LAD flow velocity data. (a) The first 3 modes of oscillation and the mean value; (b) mean trends; and (c)
oscillations about the mean trends. E is the fraction of total energy contained in the mode of oscillation or mean trend. Insets

correspond to 6 s of data, with the original signal given in gray.

The results from both wavelet analysis and PCA
were compared with EMD of LAD and aortic flow
data. In general, there was agreement in the energy
distribution across the first 4 components of all 3
techniques. For LAD flow data, all the techniques pick
the mean trend as the most energetic mode, accounting
for ~73-74% of the total signal energy (Figs. 2, 5, and
7). The distribution of energy among oscillatory com-
ponents is somewhat different, though. PCA yields 2
components with nearly identical energy contribution
of ~8%, whereas in EMD and wavelet analyses the
energy of one component is nearly twice as high as that
of the next component (~9% vs. ~5% and ~12% vs.
~7%, respectively). In any case, these components
seem to capture the heart rate frequency, as can be
seen in the insets of Figs. 2, 5, and 7, and in more
details in Fig. 4b. Finally, the last components for all 3

techniques seem to carry very little energy (~2%), and
are mostly responsible for high-frequency details (see
insets). Based on this observation, we conclude that
low energy components are mostly representing the
noise in the waveform, and are therefore excluded from
the present analysis.

Similar conclusions can be drawn based on the
analysis of aortic flow data. EMD and PCA rank the
mean trend in the 3rd place with ~19 and ~18% of the
total energy, respectively; while wavelet analysis ranks
the mean trend in the 2nd place, with ~20% contri-
bution (see Figs. 3, 6, and 8). Likewise, the oscillatory
components in EMD analysis and PCA are fairly
balanced (~27% vs. ~21% and ~26% vs. ~26%,
respectively), whereas those of wavelet analysis are
largely disproportionate (~40% vs. ~20%). Similar to
LAD flow data, the first two oscillatory components
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are sufficient to capture the majority of the energy at
the frequency of the heart beat (see insets). Finally,
note that unlike in the case of LAD flow data, the last
components in all 3 techniques are quite significant
with energy contributions of ~10, ~7, and ~12%, for
EMD, PCA and wavelet analysis, respectively. This is
consistent with a lack of a dominant mean trend in the
aortic data, meaning that a large portion of energy has
to be accounted for by oscillatory components.

A detailed comparison of the mean trends from all
three techniques revealed further similarities between
EMD and wavelet analysis (Figs. 9a and 9b). Since the
PCA mean trend is a simple arithmetic mean of the
total data, it does not capture the general increase in
LAD flow velocity (Fig. 9a) or the general decrease in
aortic velocity (Fig. 9b) that both EMD and wavelet

analysis predict. A drawback of the wavelet mean trend
is an edge effect where the mean has abrupt changes at 0
and 10 h (Fig. 9). These abrupt changes do not appear
to be physiologic, but are present in the wavelet means
of both LAD and aortic data. The EMD mean trend
does not show any apparent edge effects.

This study shows that EMD may be applied to
lengthy recordings of flow data. The results of EMD
analysis are consistent with those of well-known (sta-
tistical) signal processing techniques, such as PCA and
wavelet analysis. EMD method seems to combine the
best qualities of the two techniques: it yields a data-
dependent (adaptive) basis, reminiscent of the PCA
basis, while being able to account for non-stationary
trends in the data, which is the strength of compactly
supported wavelets. When applied to flow waves in a
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single heartbeat (Fig. 10), EMD produces a low
number of components (4 total shown in Fig. 11), as
opposed to the high number of components generated
in longer time periods (25 total, only a few are shown
in Fig. 2). Future studies must assess the reproduc-
ibility of these single heartbeat IMFs. Once these IMFs
become well characterized and assigned physiological
meaning, EMD may then be used as a tool to differ-
entiate between healthy and diseased flows. This pre-
mise is based on the well-known observation that
atherogenic and atheroprotective flows are different.
Hence, it is essential to quantify which feature(s) of the
flow profile are responsible for activation of athero-
genic pathways. For example, flow reversal, high fre-
quency components, time averaged flow magnitude,
peak flow magnitude and oscillatory features may be
implicated.>®1%:202225 The proposed method provides

a mathematical tool to quantify such features. Future
studies must focus on the features of waveform that are
essential for mechanotransduction, growth, remodel-
ing and atherosclerosis.

APPENDIX
Empirical Mode Decomposition (EMD )

EMD is a numerical technique which yields a
decomposition of a signal into intrinsic modes through
the sifting process. Normally, IMFs are ordered by
their smoothness, as determined by the sifting process,
with the residual being the last (smoothest) mode in the
sequence. In the present study, IMFs are ordered
according to their energy content. This renders EMD
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FIGURE 8. Wavelet analysis of aortic flow velocity data. (a) The first 4 modes of oscillation, (b) partial reconstructions; and (c) the
corresponding oscillations. E is the fraction of total energy contained in the mode of oscillation or partial reconstruction. Insets

correspond to 6 s of data, with the original signal given in gray.

comparable to other classical methods, such as PCA
and wavelet analysis. The energy, F, of a time series is
related to the square of its amplitude, i.e. E= Y a?,
where q; is the amplitude of a signal at a discrete tifne 7,
and the summation runs over all discrete times. Let
C;(j = 1,2,...,n), denote EMD components (IMFs
and the residual) of the original wave, X, ranked in
order of decreasing energy. Note that in this sorting
scheme, the residual is not necessarily the last com-
ponent, C,. The first 4 components of X are shown in
Figs. 2a (LAD data) and 3a (aortic data).

By design, the EMD components, C;, are additive;
i.e., the sum of the residual and all IMFs is equal to the
original signal:X' = » 7" | C;, where nis the total number
of components, determined through the sifting process.
With the EMD components ranked according to energy,

we may define the mth order partial reconstruction of X’
as a partial sum of the m most energetic components:

X(m) =M, =) _C (A1)

Note that X(m) — X as m — n; i.e., increasing the
order of partial sum will add more features to the
reconstruction, and in the limit the original wave will
be reconstituted. The partial reconstructions, M,,, in
Figs. 2b and 3b are shown for m < 4. Finally, Figs. 2¢
and 3c show the oscillations, X,,, around the partial
reconstructions, defined by X,,, = X - M,, (im = 1, 2,
3, 4). If the residual happens to be one of the compo-
nents, Cj, in Eq. (A.1), then the partial reconstructions
M, can be viewed as higher order mean trends and X,,,
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FIGURE 10. LAD flow velocity in a single heartbeat.

represent the oscillations around the mean trends,
common to traditional EMD analyses."”

Principal Component Analysis (PCA)

PCA, also known as a proper orthogonal decom-
position, or Karhunen-Loeve decomposition,'®!'” i
statistical technique that relies on a rotation of the data
coordinate system so that in the new coordinate system

the data are maximally uncorrelated. The method has
numerous desirable properties and has been exten-
sively used in biomedical applications for analysis of
various wave phenomena.

PCA is typically applied to a population of signals,
which can be regarded as realizations of a common
random process.””*! To analyze a single time series
X = [x1,x,...,x4] in this fashion, it is necessary to divide
the time series into a number of non-overlapping seg-
ments, say Xi,X5,...,X, where each segment is an n-
sample long time series (Nn = d). The objective of
choosing N and #, is to maximize the correlation in the
population {X;}~, which is crucial for the success of
PCA. To this end, we calculated the auto-covariance
sequence of the aortic flow velocity data, X, and we
consider a lag at which the sequence attains a maximum.
The first non-trivial peak' appears at the lag t = 121,
which at the sampling rate of 200 Hz corresponds to
~0.6 s. Not surprisingly, this period roughly matches the
duration of the cardiac cycle. Therefore, by choosing
n = 121, the time series, X, is to split into segments
X1,X5,...,Xy, which appear as maximally correlated
random samples of the same random vector X € R".

Once the population {X}Y, is defined, PCA pro-
ceeds by finding the eigenvalues of the sample covari-
ance matrix, Xyy, defined by

N
Zxx o Y [Xi = ] [Xi — py] "€ R (A2)
i=1

where uy = #ZL X; is the sample mean of the pop-
ulation. Since the matrix Xyy is symmetric and positive
definite, its eigenvectors are orthogonal and form a
basis in ®".' The strength of PCA is that data can be
faithfully represented in a low-dimensional subspace,
spanned by the principal eigenvectors of X yy, while the
complementary subspace can be discarded as noise.
The principal eigenvectors, also known as the principal
components, are the eigenvectors of Xy, that corre-
spond to a few of its largest ecigenvalues. While the
number of chosen principal components is application
specific, more correlated populations generally allow
choosing a smaller number of principal components.

If {v;}j~ | are the m principal components, then any
vector, X; € ", can be represented in the new basis as
¢ = [c},c?,...,c}"], where the coefficients, ¢, are defined
as: ¢ = (X; - ,uX)ij. Similarly, each X; from the
population can be recovered using the mth order par-
tial reconstruction:

m
Xi(m) = py+ >y, (A.3)
=

! Autocovariance sequence of a time series always has a trivial peak at
the lag © = 0 since each sample is in perfect correlation with itself.
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FIGURE 11.

(a) IMFs and residual; (b) mean trends; and (c) oscillations about the mean trends of LAD flow velocity in a single

heartbeat. E is the fraction of total energy contained in the mode of oscillation or mean trend.

In this study we use m < 3 principal components.
Note that X;(m) — X; as m — n. The modes C; (j = 1
2, 3) of the time series, X (see Figs. 5a and 6a) are
constructed by concatenating the modes of individual
population vectors, X, i.e.

{cjv cfzvl,

Wl ] (A4)
Similarly, jth order partial reconstruction of X (see
Figs. 5Sb and 6b) is obtained by concatenating the

partial reconstructions of individual vectors, X, i.e.,

M= [X7(). XT(),--- . XR()], V;=0.1,2,3 (AS5)
where X, /(0) = py. Analogous to EMD, these partial
reconstructions are referred to as mean trends. Finally,
oscillations, Xj, around the mean trends (see Figs. 5c
and 6c) are defined as: X; = X - M, (j = 0, 1, 2, 3).

Wavelet Analysis

Wavelets represent an important tool for signal anal-
ysis, data compression, statistical pattern recognition,

and other signal processing applications. The mathe-
matical theory of wavelets is beyond the scope of this
article, and a comprehensive exposition can be found
in Mallat." Historically, the development of wavelets
was inspired by the limitations of Fourier-based
techniques, and wavelets quickly attained popularity
because of their ability to handle non-stationary
signals.

A time series, X € R?, can be represented in the

wavelet basis as
X = § Ca,blpa,b
a,b

(A.6)

where V,,, are wavelet (basis) functions and ¢, are the
expansion coefficients. The basis functions, ¥, ,, are
obtained by scaling and translating a common wave
pattern, , called the mother wavelet. In particular

x//a,,()—j_ ( ), a,beR

where, a and b, represent the scale and transla-
tion parameters, respectively. The major strength of

(A.7)
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wavelets is that the scales and translations can be
varied systematically; thus, capturing analyzed func-
tion features at various scales (frequencies) and
occurrence times. Since X is a discrete signal, the basis
functions in Eq. (A.2) are obtained by discretization of
the wavelets in Eq. (A.3). The expansion coefficients,
ca.p» are obtained by projecting the signal, X, onto the
wavelet basis; i.e., ¢,p = XTlpa,b. If the dyadic scales
and translations are chosen, that is {a = 2; b = k2
J.k € Z}, it can be shown that the basis in Eq. (A.2) is
orthogonal.

While there are a number of wavelet families, most
of them have similar properties. In this study, we use a
wavelet from the family of coiflets.® Coiflets belong to
the family of compactly supported wavelets, which
makes them a suitable tool for analysis of transient and
non-stationary phenomena. The choice of wavelet
family did not significantly influence the results of our
analysis. Coiflets are parameterized by the number of
vanishing moments; and here, we use the family coif5*
which has 10 vanishing moments. A change in the
number of vanishing moments does not significantly
affect the results of our study.

The modes C; (j = 1, 2, 3, 4) of the time series, X,
(see Figs. 7a and 8a) are obtained by reconstructing
the signal at various scales:

C]' = Z ca/-,blpa,»,b (AS)
b

where ay, a», a3, and a4 are the 4 scales that carry the
most of signal energy. Similar to EMD and PCA
analyses, the jth order partial reconstructions M, (
J = 1,2, 3, 4), (see Figs. 7b and 8b) are defined as
partial sums M; =", _Ck, V;=1,2,3,4, and their
respective oscillations, X; (see Figs. 7c and 8c) are
defined as: X; = X - M;(j = 1, 2, 3, 4).
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