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Abstract
Objective.Spinal cord injury (SCI) often leaves affected individualsunable to ambulate.
Electroencephalogram (EEG) based brain±computer interface (BCI) controlled lower
extremity prostheses may restore intuitive and able-body-like ambulation after SCI. To test its
feasibility, the authors developed and tested a novel EEG-based, data-driven BCI system for
intuitive and self-paced control of the ambulation of an avatar within a virtual reality
environment (VRE).Approach.Eight able-bodied subjects and one with SCI underwent the
following 10-min training session: subjects alternated between idling and walking kinaesthetic
motor imageries (KMI) while their EEG were recorded and analysed to generate
subject-speci®c decoding models. Subjects then performeda goal-oriented online task,
repeated over ®ve sessions, in which they utilized the KMI tocontrol the linear ambulation of
an avatar and make ten sequential stops at designated pointswithin the VRE.Main results.The
average of¯ine training performance across subjects was 77.2§ 11.0%, ranging from 64.3%
(p D 0.001 76) to 94.5% (pD 6.26£ 10¡ 23), with chance performance being 50%. The
average online performance was 8.5§ 1.1 (out of 10) successful stops and 303§ 53 s
completion time (perfectD 211 s). All subjects achieved performances signi®cantly different
than those of random walk (p< 0.05) in 44 of the 45 online sessions.Signi®cance.By using a
data-driven machine learning approach to decode users' KMI, this BCI±VRE system enabled
intuitive and purposeful self-paced control of ambulationafter only 10 minutes training. The
ability to achieve such BCI control with minimal training indicates that the implementation of
future BCI-lower extremity prosthesis systems may be feasible.

S Online supplementary data available fromstacks.iop.org/JNE/9/056016/mmedia

(Some ®gures may appear in colour only in the online journal)

1. Introduction

Neurological conditions such as spinal cord injury (SCI) may
leave the affected individuals with paraparesis or paraplegia
that renders them unable to ambulate. Currently, there are

no methods to restore lower extremity motor functions in
this population, which inspired the pursuit of alternative
substitutive technologies such as robotic exoskeletons [1],
functional electrical stimulation (FES) systems [2], or spinal
cord stimulators [3]. A major limitation of these approaches
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is the absence of direct supraspinal control, which precludes
them from achieving the much sought-after able-body
function. In addition, issues such as manual control, high
cost, and unwieldiness may have prevented their widespread
adoption. Consequently, wheelchairs remain the primary
means of mobility after SCI. Unfortunately, the absence
of lower extremity utilization associated with wheelchair
use causes a wide variety of comorbidities that contribute
to the majority of SCI-related medical care costs [4±7].
Therefore, to address current shortcomings in the treatment
of paraparesis/paraplegia due to SCI, novel brain-controlled
prostheses are being actively pursued [8].

The integration of brain±computer interfaces (BCIs) with
lower extremity prostheses, such as FES, to restore or improve
gait function in this population may constitute one such
novel approach. At the time of this study, no integrated BCI-
lower extremity prosthesis system for independent overground
walking has been reported on. Successful implementation of
such a system may potentially reduce disability in subjects
with SCI, promote their independence and social integration,
and reduce the incidence of associated medical comorbidities.

An ideal BCI-lower extremity prosthesis system is
envisioned to have intuitive and robust control, as well as
minimal user training. For example, an intuitive strategy
for control of a BCI prosthesis may include attempted
walking or kinaesthetic motor imagery (KMI) of walking. The
feasibility of such a system is contingent upon the ability
to robustly decode neurophysiological patterns underlying
these control strategies in the face of potential cortical
reorganization following SCI. More speci®cally, functional
magnetic resonance imaging (fMRI) studies suggest that brain
areas normally associated with motor imagery of the lower
extremity movements or gait may diminish, disappear, or
shift following paraplegia due to SCI [9±12]. This requires
that such a BCI system accommodates for each user's
potentially unique physiology. In addition, a BCI system
must be designed to facilitate rapid user training, thereby
promoting widespread adoption of this technology. The
authors hypothesize that a data-driven method for extracting
subject-speci®c electrophysiological correlates underlying
intuitive BCI control strategies will satisfy the above criteria
and facilitate a BCI system that is intuitive, robust and permits
rapid user training.

This paper presents a novel electroencephalogram (EEG)-
based BCI system for intuitive, self-paced control of the
ambulation of an avatar within a virtual reality environment
(VRE). This BCI-controlled walking simulator employs a
data-driven, subject-speci®c EEG decoding model, which
enabled nine subjects (one with paraplegia due to SCI) to
use walking KMI to achieve intuitive control of the avatar's
ambulation after a very brief training session. This simulator
provides a similar, albeit virtual, experience to the operation of
a potential BCI-controlled lower extremity prosthesis, without
the associated physical risks [13]. In addition, the use of VRE
in the context of BCI has been shown to reduce the decoding
error [14]. The ability to rapidly achieve purposeful control of
an avatar within the VRE represents a necessary step towards
successful integration of EEG-based BCI systems and physical

Table 1.List of participants with demographic data and prior BCI
experience relevant to the task. SCI status scored accordingto
American Spinal Injury Association (ASIA) impairment scale.

Subject Gender Age BCI experience SCI status

A1 M 40 » 1 h ±
A2 M 29 » 1 h ±
A3 F 23 » 1 h ±
A4 F 57 0 h ±
A5 F 24 0 h ±
A6 M 21 0 h ±
A7 M 25 0 h ±
A8 M 32 0 h ±
S1 F 27 0 h T8 ASIA B,

11 yr post injury

prostheses. It also implies the feasibility of envisioned BCI-
lower extremity prosthesis systems. Finally, it may in the
future act as the ®rst step in training SCI users to operate
such prosthesis systems once they become available.

2. Methods

2.1. Overview

To determine the feasibility of future BCI-lower extremity
prosthesis systems for ambulation, a data-driven, subject-
speci®c decoding methodology that enabled intuitive BCI
control was utilized. To this end, eight able-bodied subjects and
a single subject with paraplegia due to SCI used walking KMI
to operate the ambulation of the avatar within a VRE. They
®rst underwent alternating epochs of walking KMI and idling
while their EEG data were collected. Subsequently, a computer
algorithm used this training data to extract salient EEG signal
features and train an EEG classi®er. The training procedure
was followed by an online BCI evaluation, where subjects
utilized walking KMI and idling to asynchronously control
the linear ambulation of an avatar within the VRE. To assess
the attainment of purposeful control, subjects' performances
were recorded over several online sessions and compared to
random walk Monte Carlo simulations.

2.2. Subject recruitment

The study was approved by the University of California, Irvine
Institutional Review Board. Nine subjects were recruited and
gave their informed consent to participate. Their demographic
data are shown in table1.

2.3. Data acquisition

Each subject was seated in a chair approximately 1 m from
a computer monitor that displayed either textual cues (during
training sessions) or the VRE (during online sessions). EEG
was recorded using a 63-channel EEG cap (Medi Factory,
Heerlen, The Netherlands) with Ag-AgCl electrodes arranged
according to the extended 10-20 International Standard.
Conductive gel (Compumedics USA, Charlotte, NC) was
applied to all electrodes and the 30 Hz impedances between
each electrode and the reference electrode were maintained
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at < 10 KÄ by abrading the scalp with a blunt needle.
Two NeXus-32 EEG systems (MindMedia, Roermond-Herten,
The Netherlands) were linked together and used to amplify
and digitize (sampling rate: 256 Hz, resolution: 22 bits,
built-in anti-aliasing ®lter: 27% of sampling rate) the EEG
signals. Signals were streamed in real-time to a computer and
subsequently re-referenced in a common average mode. Data
acquisition and analysis were performed using custom-made
MATLAB TM (MathWorks, Natick, MA) programmes.

2.4. Training procedure

To facilitate intuitive control of the BCI, subject-speci®c EEG
decoding models were generated to differentiate between EEG
underlying idling and walking KMI. In addition to being
more intuitive than visual motor imagery, KMI is known
to provide better separability of EEG for BCI applications
[15]. To this end, subjects were instructed by textual cues
to generate walking KMI (i.e. imagine themselves walking)
and idling KMI (i.e. relax), while their EEG data were
recorded. The textual cues alternated every 30 s for a total
of 10 min. At the same time, the EEG data were labelled
as either walking or idling by a corresponding computer
signal recorded by an auxiliary data acquisition system
(MP150, Biopac Systems, Goleta, CA). The labelling and
EEG signals were synchronized by sending a common pulse
train to both the MP150 and NeXus¡ 32 data acquisition
systems. Electromyogram (EMG) activity was not recorded
to monitor for minor limb movements, since increased EMGs
are often observed during KMI [16±19]. Instead, the subjects
were instructed to refrain from moving during the training
procedure, which was enforced by observing the procedure and
discarding the entire session if it was considered contaminated
by movements.

2.5. Of¯ine signal analysis and decoding model generation

The training EEG data were analysed of¯ine to generate a
subject-speci®c decoding model. First, the EEG and labelling
signals were aligned using the common synchronization pulse
train. In addition, EEG channels with excessive EMG activity
were excluded from further analysis using an iterative artefact
rejection algorithm [20]. The pre-processed continuous 10 min
EEG record was then split into 30 s long segments of idling
and walking states based on the labelling signal. Due to
uncertainties in timing between the computer cue and the
subject's reaction, the ®rst 8 s of each state were removed
from analysis. Each remaining 22 s EEG segment was then
divided into ®ve 4 s long non-overlapping trials for a total of
100 trials.

The labelled EEG trials were then fast Fourier transformed
(FFT), and their power spectral densities were integrated
in 2 Hz bins that were centred at 1; 3; : : : ; 39 Hz,
yielding 20 power spectral values per channel. Note that this
resulted in high-dimensional data (» 1000 dimensions), which
signi®cantly exceeded the number of trials, thereby causing a
small sample size problem [21]. Therefore, the dimension of
the input data was initially reduced using classwise principal
component analysis (CPCA) [22, 23]. The class differences

were enhanced and the dimension was further reduced by
either approximate information discriminant analysis (AIDA)
[24, 25] or Fisher's linear discriminant analysis (LDA)
[26]. The choice between AIDA and LDA was determined
based on the average classi®cation accuracy described at the
end of this paragraph. The combination of these methods
yields a piecewise linear feature extraction mapping that
approximately maximizes the mutual information between
the features and class labels [24]. A detailed account of
these techniques can be found in [22, 23, 25]. This resulted
in the extraction of one-dimensional (1D) spatio-spectral
features:

f D T8 C.d/ (1)

whered 2 RB£ C is a single-trial of EEG data,B is the number
of frequency bins per channel,C is the number of retained EEG
channels,8 C : RB£ C ! Rm is a piecewise linear mapping
from the data space to anm-dimensional CPCA-subspace, and
T : Rm ! R is an AIDA or LDA transformation matrix. Once
1D spatio-spectral features were extracted, a linear Bayesian
classi®er:

f ? 2
½

I ; if P. I j f ?/ > P.W j f ?/
W; if P.W j f ?/ > P. I j f ?/

(2)

was designed, whereP.I j f ?/ andP.W j f ?/ are the posterior
probabilities of idling and walking classes given the observed
feature,f ?, respectively, and were calculated using the Bayes
rule. Note that the classi®er (2) utilizes the maximum posterior
probability (MAP) rule. The classi®cation accuracy of the
Bayesian classi®er (2) was then assessed by performing ten
runs of strati®ed tenfold cross-validation (CV) [27].

This above procedure was systematically repeated
to ®nd the optimal frequency range [20]. Brie¯y, the
lower frequency bound was increased in 2 Hz steps until
the classi®er performance stopped improving, allowing the
optimal lower frequency bound,FL, to be determined.
The optimal higher frequency bound,FH , was found in a
similar manner. The optimal frequency range, the list of
retained channels (RC) after artefact rejection, the feature
extraction mapping, and the classi®er parametersÐreferred
to as the decoding model, were then saved for real-time EEG
analysis. Finally, the signal processing, feature extraction, and
classi®cation algorithms were implemented into the BCI
software and optimized for real-time operation.

2.6. Online signal analysis

During online operation, blocks of EEG data were acquired
every 0.5 s. This rate was limited by the computer processing
speed and was empirically found to ensure data acquisition
without dropping packets. The EEG data were then divided
into 0.75 s long segments and were processed as described in
section2.5. Note that this segment length provided an accurate
estimation of EEG spectral power even at the lower end of
physiologically relevant frequencies [20]. Subsequently, the
EEG signals from artefact-prone channels were excluded, and
the remaining EEG data were transformed into the frequency
domain by FFT. The power spectral densities over the optimal
frequency range were calculated and used as an input to the
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Figure 1. The BCI system is a binary state machine with idling and
walking KMI states represented by circles. The state transitions are
represented by arrows, with transitions triggered by the conditions
shown next to the arrows. Self-pointing arrows denote that the
system remains in the present state.

feature extraction algorithm (1). The posterior probabilities of
idling and walking classes given the observed EEG feature
were then calculated using the Bayes rule.

2.7. Online calibration

Prior to online BCI operation, a short calibration procedure
was performed to determine state transition rules suitablefor
self-paced online BCI operation. This is necessary because
unlike of¯ine analysis that is based on well-segmented and
labelled EEG trials, online data segments may lie at class
transitions. This would cause the MAP rule (2) to create
an excessively noisy state transition sequence, which may
frustrate the user during online BCI operation. A similar
calibration approach was found to be effective in related self-
paced BCI studies [8, 20, 28].

The self-paced BCI operation is modelled as a binary state
machine (see ®gure1), where state transitions are triggered
by comparing the posterior probabilities to suitably chosen
thresholds,TI andTW . The system transitions from the idling
to walking state whenNP.W j f ?/ > TW , where NP.W j f ?/
is the posterior probability of the walking class given the
observed feature,f ?, averaged over the most recent 1.5 s
of EEG data (note that averaging may further smooth the
state transitions). Conversely, the system transitions from the
walking to idling state wheneverNP.W j f ?/ < TI . When
TI 6 NP.W j f ?/ 6 TW , the system remains in the present
state. In summary, unlike the MAP rule (2) that essentially
usesTI D TW D 0:5, the proposed scheme requires more
substantial evidence before state transitions are initiated. If not,
the default behaviour of the system is to remain in the present
state, which also reduces the subject's mental workload.

To determine the optimal thresholds, the BCI system ran
in the online mode while subjects were prompted to alternate
between idling and walking KMI for a total of» 2 min.
During each mental state, the posterior probabilities were
calculated as in section2.6, and their histogram were plotted.
Based on these histograms, the thresholds were initially
chosen as:TW D median

©
NP.W j f ? 2 W /

ª
, and TI D

median
©

NP.W j f ? 2 I /
ª
, where NP.W j f ? 2 W / and

NP.W j f ? 2 I / represent the posterior probabilities of walking
given that the subject was instructed to engage in walking
KMI and idling, respectively. A short online test was then
performed and based on the subject's feedback, these initial
threshold values were further adjusted prior to online operation
in order to help optimize the performance.

While this approach may appear similar to the concept
of a `brain switch' [29, 30], there are signi®cant differences

between the two approaches. For example, the brain switch
toggles between idle and active states with a single motor
imagery, and once the system switches from one state to
another, the motor imagery is no longer required. On the other
hand, our system requires two motor imageries, and to remain
in the present state, the corresponding motor imagery must
be sustained. While this may increase the mental workload
of the subject, this approach is more intuitive because of the
1:1 correspondence between motor imageries and intended
actions.

2.8. BCI and VRE integration

The VRE was constructed using Garry's ModTM simulated
physics environment (Valve Corporation, Bellevue, WA), and
consisted of a ¯at grassland with ten non-player characters
(NPCs) standing in a straight line. The course length was» 120
body lengths (» 210 m, assuming a body length of 1.75 m)
along the users' avatar linear path (see ®gure2). This design
is intended to facilitate a goal-oriented online test in which the
subjects utilized walking KMI and idling to walk the avatar
forward and stop by each NPC, similar to [13]. Further details
of the online evaluation are described in section2.9.

To interface the BCI software and VRE, a virtual joystick
programme (Parallel Port Joystick [31]) was used. To this
end, a CCC dynamic-link library was developed to relay BCI
commands to move/stop the avatar via the virtual joystick.
Finally, a custom-made C# programme performed optical
character recognition on the position readouts from the VRE's
display (see ®gure2) in order to automatically track the
subject's online BCI performance.

2.9. Online performance and assessment

To assess the online BCI performance, subjects used walking
KMI to move the avatar to each NPC and idling KMI
to stand still within a two-body length radius (centred at
NPC) for at least 2 s. A short video demonstrating the
task is provided as supplementary material, available from
stacks.iop.org/JNE/9/056016/mmedia. Similar to the training
procedure, the subjects were instructed to refrain from moving
and were asked to repeat the task if movements were detected.
Each subject repeated this task over ®ve sessions, with all
sessions completed within a single day. Two performance
measures were recorded during each session: the time taken
to complete the course and the number of successful stops.
Subjects received one point for idling the avatar within the
designated stop for at least 2 s; therefore, the maximum
successful stop score was ten points. In addition, only a fraction
of the point was awarded for dwelling between 0.5 and 2.0 s.
Note that subjects were not penalized for dwelling longer
than 2 s, however, this will inevitably increase the completion
time and therefore lower the overall performance. A 20 min
time limit was enforced, beyond which the online session was
interrupted and the number of successful stops achieved thus
far was recorded. Ideally, it should take on average 18 s to
walk from one NPC to the next without stopping, with the
total course completion time of 211 s (191 s for walking and
20 s for idling).
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Figure 2. The VRE with the BCI-controlled avatar in third person `over-the-shoulder' view. Shown next to the avatar is an NPC and a traf®c
cone. The position/speed readouts are shown in the top right corner.

2.9.1. Control experiments.The numbers of successful stops
and completion times were compared to those achieved by
random walk to determine whether purposeful control was
attained. Random walk performances were simulated by
sampling the posterior probabilities uniformly between 0 and
1 and applying the state transition rules outlined in section 2.7
with the subject-speci®c threshold values,TI and TW . The
random walk simulator was also allotted the 20 min time
limit, and the number of successful stops was calculated in
the same manner as above. To facilitate statistical testing,
1000 Monte Carlo runs of the random walk simulation were
performed. The subjects' performances were then compared
to those of the Monte Carlo simulation, and empirical p-values
were calculated. An additional control experiment consisted
of an able-bodied subject manually performing the same task
with a physical joystick.

2.9.2. Statistical tests. The 2D probability density function
(PDF), with number of successful stops and completion times
as variables, of each subject's simulated random walk was

estimated using the Parzen window method [32, 33]. Through
each subject's observed performance point (consisting of
a successful stops and completion time pair), a constant-
value PDF contour was drawn. The volume under the PDF
outside the contour was then found by numerical integration,
effectively de®ning thep-value (the null hypothesis being that
the subjects' performances are no different from random walk).
Purposeful control was de®ned as the ability to complete the
task within 20 min with performances signi®cantly different
from random walk in a multivariate analysis.

3. Results

3.1. Of¯ine performance

The nine subjects underwent training data collection as
described in section2.4, and subject-speci®c EEG decoding
models were generated as described in section2.5. CV of
these models resulted in classi®cation accuracies rangingfrom
64.3% to 94.5% (table2), with p-values< 0:01 (the null
hypothesis being de®ned as having a chance level classi®cation
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Figure 3. Spatio-spectral feature extraction maps corresponding tothe 12±14 Hz frequency range for subject A2. Dark colours (red and
blue) represent the areas that were responsible for encoding the differences between idling and walking KMI. Since the feature extraction
method is piecewise linear (see section2.5), there are two maps: the map on the left (right) corresponds to the subspace adapted to the idle
(walking) class, respectively.

Table 2.Of¯ine performances represented as classi®cation
accuracies estimated with ten runs of strati®ed tenfold CV.The
classi®cation accuracy is de®ned as the probability of correctly
classifying a trial given the feature,f ?, i.e.
P.correctj f ?/ D P.I j f ? 2 I /P. I / C P.W j f ? 2 W /P.W /, where
P.I j f ? 2 I / andP.W j f ? 2 W / are de®ned in section2.5, and
P.I / andP.W / are the prior probabilities of idling and walking
classes, respectively. The number of RC after artefact rejection and
the optimal frequency range corresponding to each subject's of¯ine
performance are also included.

Subject P.correctj f ?/ p-value RC Freq. band

A1 88.3§ 0.7% 1:27£ 10¡ 16 54 6±20 Hz
A2 86.6§ 0.8% 6:56£ 10¡ 15 54 8±24 Hz
A3 76.0§ 1.3% 9:05£ 10¡ 8 54 6±20 Hz
A4 80.9§ 1.2% 1:35£ 10¡ 10 32a 4±40 Hz
A5 67.4§ 2.2% 2:04£ 10¡ 4 54 8±40 Hz
A6 72.5§ 1.6% 2:35£ 10¡ 6 42 4±18 Hz
A7 64.3§ 1.1% 1:76£ 10¡ 3 50 6±40 Hz
A8 64.5§ 1.8% 1:80£ 10¡ 3 25a 4±40 Hz
S1 94.5§ 0.8% 6:26£ 10¡ 23 53 8±40 Hz
A1-8 75.1§ 9.5% ± ± ±
All 77.2 § 11.0% ± ± ±
a 32-channel EEG montage was used due to technical
dif®culties.

accuracy of 50%). The average of¯ine performance of the able-
bodied subjects was 75.1%, compared to the 94.5% accuracy
of the SCI subject.

Further analysis of the subject-speci®c feature extraction
maps demonstrated that the most informative features for
classi®cation in able-bodied subjects were the EEG powers
in the 4±18 Hz frequency range over the lateral central/centro-
parietal areas (see ®gure3). However, for the SCI subject
(subject S1), the EEG powers in the 14±18 Hz frequency range
over the mid-central areas were the most informative features
for classi®cation (see ®gure4).

Table 3.The chosen values of thresholdsTI andTW .

Subject TI TW

A1 0.53 0.91
A2 0.24 0.64
A3 0.19 0.56
A4 0.43 0.58
A5 0.55 0.57
A6 0.53 0.61
A7 0.41 0.43
A8 0.19 0.45
S1 0.32 0.87

3.2. Online calibration

After a short calibration procedure (described in section2.7),
the distributions of the posterior probabilities,P.Wj f ?/ , were
estimated as histogram (see ®gure5). Note that in the ideal
situation, the distribution ofP.Wj f ? 2 W / should cluster
around 1, whereasP.Wj f ? 2 I / should cluster around 0. In
reality, due to the inherent noise in EEG, these distributions
will have some overlap. The state transition thresholds,TI

andTW , were then determined and their values are shown in
table3. Also, if EEG data carried no class information, the
two thresholds would be equal toP.W / (0.5 in this study).
On the other hand, if classes could be perfectly decoded from
EEG data, the threshold valuesTI andTW would approach
0 and 1, respectively. The values ofTI andTW varied across
subjects from 0.19 to 0.55 and from 0.43 to 0.91, respectively,
and as apparent in table3, the thresholds for all subjects were
separable. In addition, the calculated values ofTW were found
to correlate with the of¯ine performances shown in table2
(½D 0.87, pD 0.002). However, the same was not true for
TI (½D 0.05, pD 0.90). Finally, it was found that the of¯ine
performances also correlate with the separability ofTW and

6
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Figure 4. Feature extraction maps of subject S1 (SCI subject) showingthat EEG power in the 14-16 Hz bin at channel Cz was the most
informative for encoding the differences between idling and walking classes.

Figure 5. Histogram of the distribution of posterior probabilities of idling (top) and walking KMI (bottom) states for subject S1. The dotted
lines denote quartiles.

TI (i.e.TW ¡ TI ), resulting in a correlation coef®cient of 0.80
(pD 0.009). Note, however, that these tests were based on only
nine samples.

3.3. Online performance

As described in section2.9, the online performances of all
subjects operating the BCI-controlled walking simulator were
evaluated by comparing the task completion times and the
successful stops to those of the simulated random walk.

After completing 1000 Monte Carlo random walk trials per
subject with the threshold parameters given in table3, the
2D PDF contours were constructed and the empiricalp-values
of the subject's online performances (numbers of successful
stops and completion times) were calculated. The online
performances, the corresponding empirical p-values, and the
random walk PDF contours of ®ve representative subjects
(including the SCI subject) are shown in ®gure6. Overall, in
43 out of 45 online sessions, subjects achieved performances
that were signi®cantly different (i.e. `outside of the contours')

7
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Figure 6. Online performances of ®ve representative subjects. Each cross corresponds to one online session's completion time and
successful stops. The numbers next to the crosses indicate the empiricalp-value, calculated as described in section2.9.2, and are colour
coded by their signi®cance level (see legend). The random walk PDFs are displayed as contours. Subjects A8 (A7) had the best (worst)
online performances, respectively. For subjects A1 and S1, the random walk simulation did not complete the task within the allotted 20 min,
hence contours are not shown.

from those of random walk (p < 0.01). At a signi®cance level
of 0.05, performances were different from random walk in
44 sessions (subject A7 had a single session with a non-
signi®cant performance). In addition, the average completion
times and successful stops are summarized in table4. Note that
the completion time consists of a ®xed walking time (191 s)
and a variable amount of idling time.

As previously mentioned, based on the de®nition in
section 2.9.2, purposeful BCI control of the avatar was
achieved by all subjects in 44 out of 45 online sessions. The
performance breakdown according to individual measures is
as follows. Subjects A1 and S1 achieved purposeful control
with superior performance in both measures. Subjects A4±
A6 achieved purposeful control with superior performance

8



J. Neural Eng.9 (2012) 056016 P T Wanget al

Table 4.Average online performances of the subjects compared to
those of random walk (denoted by RW in the immediate row).

Completion time (s) Successful stops
Subject mean§ std mean§ std

A1 319.8§ 48.3 9.14§ 0.57
A1-RW >1200 0.24§ 0.43
A2 266.7§ 10.8 7.80§ 1.10
A2-RW 224.4§ 18.1 1.47§ 1.09
A3 291.9§ 19.3 8.03§ 1.08
A3-RW 219.3§ 9.8 2.46§ 1.37
A4 291.7§ 20.6 9.01§ 1.39
A4-RW 383.4§ 26.7 9.15§ 0.82
A5 325.4§ 54.2 8.10§ 0.94
A5-RW 602.6§ 38.5 9.89§ 0.24
A6 318.2§ 27.3 8.09§ 1.06
A6-RW 699.0§ 53.4 9.91§ 0.24
A7 291.5§ 24.4 7.65§ 1.19
A7-RW 251.6§ 9.8 5.62§ 1.24
A8 228.8§ 14.0 9.34§ 0.60
A8-RW 193.9§ 2.3 0.39§ 0.54
S1 410.6§ 37.4 9.25§ 0.96
S1-RW >1200 4.52§ 1.60
Able-bodied 292.4§ 41.4 8.39§ 1.12
All subjects 302.9§ 53.0 8.46§ 1.12
Joystick 205.07§ 4.2 9.38§ 0.85

in completion time only. On the other hand, subjects A2,
A3, A7 and A8 achieved purposeful control with superior
performance in the number of successful stops, although they
required more time to complete the task. However, it is crucial
that these individual performance measures be interpreted
in the context of each other in order to be meaningful, and
these points will be further elaborated upon in section4.
Finally, to demonstrate the performance level achievable by
manual control, an able-bodied subject performed the task
with a physical joystick. The manual joystick performance was
signi®cantly different and superior to the BCI performances in
terms of completion times (p D 0.0002) but was not different
in terms of the number of successful stops (p D 0.086).

Figure7 shows a representative time-space course of one
online session for subject A8. In this session, not only did
the subject complete the course with the maximum successful
stops and a short completion time, but also he had only two
false starts (moving when not supposed to) and no false stops
(stopping when not supposed to). Over ®ve online sessions,
this subject averaged 0.4 false starts and 2.6 false stops. By
factoring in the duration of false starts and stops, as well
as the completion time, these correspond to error rates of
0.42% and 3.34%, respectively. The online performances of
the other subjects were not recorded with this level of detail
(the computer code was modi®ed in the late stage of the study
to accommodate for this function), and so it is not possible to
state their exact false start and false stop rates. Since subject
A8 achieved the best online performance, it is likely that other
subjects' online error rates were higher than the numbers
reported above. Therefore, while not universally applicable,
the results presented in ®gure7 illustrate the level of control
achievable by this BCI system.

Figure 7. Time-space course of a representative online session for
subject A8. The pink areas mark designated stopping zones. Orange
segments mark false starts. In order to ®nish the course, a subject is
required to walk out of the last stopping zone.

Finally, multiple linear regression was used to evaluate the
correlation between of¯ine and online performances. More
speci®cally, of¯ine performance was treated as a dependent
variable with completion times and numbers of successful
stops as the regressors. A moderately positive correlationwas
found with respect to both regressors with a goodness of ®t
R2 D 0:2091 (p D 0.0073).

4. Discussion and conclusions

This study reports on the successful implementation of a self-
paced BCI-controlled walking simulator in which eight able-
bodied and 1 SCI subjects acquired intuitive purposeful BCI
control of the avatar's linear ambulation after only a 10 min
training session followed by a 2 min calibration session. The
rapid training and acquisition of purposeful BCI control were
facilitated by using a data-driven machine learning methodto
generate subject-speci®c EEG decoding models. The decoding
models were validated ®rst of¯ine and then during online
BCI operation. These results indicate that the system reported
here may satisfy the proposed requirements of an ideal BCI-
lower extremity prosthesis (robustness, intuitiveness, and short
training time) by using a data-driven machine learning method,
and it may be feasible to implement such a system in the near
future.

With the exception of the authors' preliminary work [8],
this study represents the ®rst demonstration of integrating an
EEG-based BCI with a VR walking simulator. A comparison
between this study and related BCI-VRE studies [14, 13] is
given in table5. Note that the present approach utilizes KMI of
walking/idling as a control strategy, which intuitively matches
the task. On the other hand, the study in [13], and especially
the one in [14], were less intuitive. Furthermore, the present
approach requires signi®cantly shorter training time before the
subjects are able to gain online BCI control. With the present
approach, both BCI-naÈõve and BCI-experienced subjects
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Table 5.Comparison of this study to similar studies in the ®eld.

Training Sample
Study Mental strategy time size

Present KMI of walking/idling 10 min 8 AB,
1 SCI

Wanget al [8] KMI of walking/idling 12 min 3 AB
Pfurtschelleret al [14] KMI of foot/hand 3±5 mo 3 AB

movement
Leebet al [13] KMI of foot 4 mo 1 SCI

movement/idling

were able to achieve purposeful online BCI control within
minutes as opposed to months required in the other studies. In
addition, this system has been tested in a substantially larger
population of subjects, suggesting that it may generalizable.
Finally, a direct comparison of the results between this study
and related BCI-VRE studies is not possible due to variations
in experimental designs.

4.1. Of¯ine performance

It follows from table2 that idling and walking KMI states
could be decoded from underlying EEG signals with moderate
to high accuracy. Furthermore, a 10 min training session was
suf®cient for a data-driven machine learning algorithm to
generate subject-speci®c EEG decoding models. These models
achieved of¯ine classi®cation accuracies between 64.3% and
94.5% (mean: 77.2%), which were signi®cantly superior to
random chance (50%) withp-values as small as 10¡ 23. This
was true even for BCI-naÈõve subjects. Also, note that the
subject with SCI achieved the best of¯ine performance, which
may be encouraging for the development of future BCI-lower
extremity prostheses in this population.

The EEG decoding models also yielded feature extraction
maps (e.g. ®gures3 and4) that could be used to uncover the
brain areas and frequency bands that differentiate the idling
and walking KMI behaviours. In the able-bodied subjects, the
EEG features responsible for encoding the differences between
the two states were the powers in the¹ and¯ EEG bands from
the lateral central and lateral centro-parietal electrodes. The
activity measured by these electrodes is most likely localized
to the lateral sensorimotor cortex, which is typically associated
with hand and arm movements. On the other hand, the most
informative features for the SCI subject were the EEG powers
in the ¹ and¯ bands over the mid-central electrodes. These
electrodes are likely to record the activity originating from the
medial sensorimotor cortex, where the leg and foot cortical
representation areas are classically located. Hence, it appears
that there is a divergence between the brain areas employed by
able-bodied subjects and the SCI subject while undergoing
the walking KMI. It is possible that these differences are
simply caused by different mental strategies employed by the
subjects. This may be because unlike simple motor imageries
often used in BCI studies, such as ®st clenching [34, 35] or
foot tapping [35], walking KMI emulates a highly complex
set of upper and lower extremity movements for which there
may not be a universal motor imagery strategy. Based on
their feature extraction maps, it can be hypothesized that

able-bodied subjects in this study predominantly imagined
the arm swinging process of walking as opposed to the leg
movement component. It is also possible that due to the
extremely small sample size (only 100 training EEG trials),
the relative contribution of other potential brain representation
areas (e.g. lower extremity motor areas) was masked by a
more dominant arm swing imagery in these maps. In contrast,
due to complete motor paraplegia in the SCI subject, walking
KMI may be a mental task that is as vivid as attempted leg
movements or executed walking. These hypotheses could not
be formally tested given the limited population size. Finally,
given that the important areas of these feature extraction maps
are highly localized, it may be possible to further reduce the
number of EEG channels from 25±54 (see table2) to » 20 or
less.

The proposed data-driven machine learning methodology
was able to produce subject-speci®c decoding models that
accommodate for the neurophysiological variations across
subjects. This is especially important for BCI users with SCI
due to potential post-injury cortical reorganization. Namely,
recent fMRI studies [9±12] report on signi®cant changes in
motor cortical representation areas for lower extremity motor
imagery following SCI. Thus, the involvement of classical
walking KMI representation areas seen in subject S1 may
not be universally present in SCI individuals. This further
underscores the importance of a data-driven EEG decoding
model. On the other hand, its lack of speci®city may mean that
the optimal spatio-spectral features identi®ed by this model
are not exclusively associated with walking, but also with
non-ambulatory leg or foot movements. Hence, additional
studies are necessary to better pinpoint the source and nature of
neurophysiological signals underlying both walking KMI and
attempted walking in this population. Given the limited signal-
to-noise ratio and resolution of EEG, this feat may require the
use of invasive recording modalities.

4.2. Online calibration

The state transition thresholds determined in the online
calibration session (table3) demonstrated that the transitions
from idling to walking states (and vice versa) were highly
separable. Despite the limited sample size, the values of
TW appeared to exhibit a positive correlation trend with
the of¯ine performances. This further validates the proposed
decoding methodology and its translation from of¯ine to online
operation. Note that the threshold values also affected the
performance of simulated random walk (table4). In instances
where the values ofTW were high, such as in subjects A1
and S1, the random walk simulator had dif®culty moving the
avatar and consequently could not ®nish the task within the
20 min time limit. On the other hand, the low values ofTI (e.g.
subjects A1±A3 and A8) resulted in the random walk simulator
having dif®culty stopping the avatar and therefore yielded
low successful stop scores. Finally, when the two thresholds
were close to each other and around the chance level, such as
in subjects A4±A6, the random walk simulator `inched' the
avatar forward, thereby achieving high successful stop scores
at the expense of longer completion times. In summary, these
observations are consistent with the ideal conditions where
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TW andTI approach the values of 1 and 0, respectively. They
also underscore a trade-off between the completion times and
successful stop scores inherent in the design of the online task.

4.3. Online performance

As shown in table4, the subjects' average online performance
measures ranged from 228.8 to 410.6 s for completion time
and from 7.65 to 9.34 for number of successful stops, with
subjects A8 and S1 achieving the highest number of successful
stops. While the performance of subject S1 is encouraging, it
is unclear whether this generalizes to a population of SCI
individuals. Furthermore, in all but one online session (out of
45), all subjects demonstrated purposeful BCI control.

While there is a positive correlation between the of¯ine
classi®cation accuracy and online performance measures
(see section3.3), only 21% of the of¯ine classi®cation
variance can be accounted for by the completion times and
number of successful stops. This indicates that of¯ine and
online performances are only moderately coupled, which may
have several underlying causes. First, the high variability of
online performances (see ®gure6 and table4) may cause a
poor linear regression ®t. Second, a linear regression may not
be the best model to link of¯ine and online performances.
Finally, the presence of outliers may cause the parameters of
the linear regression model to be chosen suboptimally.

As an example of the above discrepancy, the best
subject, A8, had an of¯ine performance of only 65% and yet
was able to achieve the level of online control that nearly
matched that of a manual joystick. This discrepancy may
be caused by physiological and behavioural factors. First,it
may be hypothesized that a relatively low of¯ine performance
re¯ects the subject's inconsistency in generating KMI and/or
occasional lapse in attention. Since of¯ine training is done
without feedback, the subject may not be aware of these
issues. Ultimately, this may lead to a decoding model that is
suboptimal and hence yields a low of¯ine performance. When
online, the feedback is always present, allowing the subject to
hone their mental strategy and presumably utilize KMI that is
most consistent with the model. The subject's ability to adapt
and achieve good performance during online BCI operation
may also indicate that the decoding model retains useful KMI
features despite being suboptimal.

In general, the BCI performances were inferior to those
of a manually-controlled physical joystick. Note, however,
that subject A8, a naÈõve BCI user, was on average only 23 s
slower than the joystick with a statistically equivalent number
of successful stops. Therefore, additional training and online
practice may help further reduce the completion time, possibly
to the point of approaching that of manual control. Should this
goal be achieved, it could further justify the pursuit of BCI-
controlled lower extremity prostheses, whose performances
would approach those of manually-controlled prostheses while
emulating able-bodied like control.

4.4. Conclusions

In summary, the BCI-controlled walking simulator presented
in this study satis®ed the three proposed criteria of a practical

BCI system, namely intuitiveness, robustness, and short
training time. First, the operation of the system was intuitive
as it enabled subjects to use walking KMI to control the
ambulation of the avatar. Secondly, the system was robust
in that the data-driven decoding methodology was able to
successfully accommodate for subject-to-subject variations in
the neurophysiological underpinnings of idling and walking
KMI behaviours (e.g. differences between able-bodied and
SCI subjects). Finally, the system required only a short
training time, as BCI control was attained after only a 10 min
long training data collection procedure followed by a 2 min
calibration session. To determine the suitability of the system
as a basis for future BCI-controlled lower extremity prostheses
to restore ambulation, its function must be further tested
in a population of individuals with paraplegia due to SCI.
Based on the results achieved in this study, the success
of the system in a population of SCI subjects is a realistic
proposition.
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