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Abstract

Objective.Spinal cord injury (SCI) often leaves affected individuatsable to ambulate.
Electroencephalogram (EEG) based braintcomputer ice(BCl) controlled lower
extremity prostheses may restore intuitive and able-body-like ambulation after SCI. To test its
feasibility, the authors developed and tested a novel EE$&db, data-driven BCI system for
intuitive and self-paced control of the ambulation of antavavithin a virtual reality
environment (VRE)Approach.Eight able-bodied subjects and one with SCI underwent the
following 10-min training session: subjects alternatetiieen idling and walking kinaesthetic
motor imageries (KMI) while their EEG were recorded and gs@dl to generate
subject-speci®c decoding models. Subjects then perfoargedl-oriented online task,
repeated over ®ve sessions, in which they utilized the KMbturol the linear ambulation of
an avatar and make ten sequential stops at designated piimtsthe VRE.Main results.The
average of ine training performance across subjects waa8711.0%, ranging from 64.3%
(p D 0.001 76) to 94.5% (P 6.26£ 10 29), with chance performance being 50%. The
average online performance was 8.8.1 (out of 10) successful stops and 3083 s
completion time (perfedd 211 s). All subjects achieved performances signi®canffigrént
than those of random walk ¢p 0.05) in 44 of the 45 online sessior&gni®canceBy using a
data-driven machine learning approach to decode users, K4l BCI+VRE system enabled
intuitive and purposeful self-paced control of ambulatidter only 10 minutes training. The
ability to achieve such BCI control with minimal trainingdicates that the implementation of
future BCl-lower extremity prosthesis systems may be feasible.

Online supplementary data available fraitacks.iop.org/JNE/9/056016/mmedia

(Some ®gures may appear in colour only in the online journal)

1. Introduction no methods to restore lower extremity motor functions in
this population, which inspired the pursuit of alternative
Neurological conditions such as spinal cord injury (SClymasubstitutive technologies such as robotic exoskeletdhs [
leave the affected individuals with paraparesis or paraple functional electrical stimulation (FES) systen, [or spinal
that renders them unable to ambulate. Currently, there a&erd stimulators3]. A major limitation of these approaches
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is the absence of direct supraspinal control, which prexdudTable 1. List of participants with demographic data and prior BCI
them from achieving the much sought-after able-bo per'ience relevan_t to the task. _SCIstatus _scored accdaling
function. In addition, issues such as manual control, hi%e“ca“ Spinal Injury Association (ASIA) impairment scale
cost, and unwieldiness may have prevented their widespreaSlubject Gender Age BClexperience SCl status
adoption. Consequently, wheelchairs remain the primary

means of mobility after SCI. Unfortunately, the absence,, m ‘218 :iﬂ i
of lower extremity utilization associated with wheelchair a3 F 23 »1h +
use causes a wide variety of comorbidities that contributea4 F 57 Oh +
to the majority of SCl-related medical care costg7q. AS F 24 Oh *
Therefore, to address current shortcomings in the treatmerﬁ? m gé 82 f
of paraparesis/paraplegia due to SCI, novel brain-cdetfol ,g M 32 oh +
prostheses are being actively pursuéd [ S1 E 27 Oh T8 ASIA B,
The integration of brainxcomputer interfaces (BCIs) with 11 yr post injury

lower extremity prostheses, such as FES, to restore or iapro

gait function in this population may constitute one such o o o

novel approach. At the time of this study, no integrated BCRrostheses. It also implies the feasibility of envisionedi 8
lower extremity prosthesis system for independent overggio |0Wer extremity prosthesis systems. Finally, it may in the
walking has been reported on. Successful implementationfdfure act as the ®rst step in training SCI users to operate
such a system may potentially reduce disability in subject'Ch prosthesis systems once they become available.

with SCI, promote their independence and social integnatio

and reduce the incidence of associated medical comodsditi2. Methods
An ideal BCl-lower extremity prosthesis system is

envisioned to have intuitive and robust control, as well 8&1. Overview

minimal user training. For exa_mple, an Intuitive strateg¥o determine the feasibility of future BCI-lower extremity

for control of a BCI prosthesis may include attempted

X . . . . prosthesis systems for ambulation, a data-driven, subject
walking or kinaesthetic motorimagery (KM) OfWalkmg'Thespeci@c decoding methodology that enabled intuitive BCI

feasibility of such a system is_cont.ingent upon the ab“?tgontrolwas utilized. To this end, eight able-bodied sutsjaad

to robustly decode nguro_physmlogmal patterns _undegl)_u% single subject with paraplegi:’a due to SCI used walking KMI
these c_ont_rol strategles in the face Of. potential CQI‘tIC% operate the ambulation of the avatar within a VRE. They
reorganllzatlon followlng SCL More speq@cally, funcmn ®rst underwent alternating epochs of walking KMI and idling
magnetic resonance imaging (fMRI) studies suggest that bra

. ) : while their EEG data were collected. Subsequently, a coenput
areas normally associated with motor imagery of the lowe

. . Lo . afgorithm used this training data to extract salient EE@aiig
extremity movements or gait may diminish, disappear,

r . . o
shift following paraplegia due to SCBE12]. This requires Seatures and train an EEG classi®er. The training procedure

was followed by an online BCI evaluation, where subjects
that such a BCIl system accommodates for each users]. . -
otentially unique physiology. In addition, a BCI Systenl]Jtl ized walking KMI and idling to asynchronously control
P . N : R the linear ambulation of an avatar within the VRE. To assess
must be designed to facilitate rapid user training, therekt)l){e attainment of purposeful control, subjects' perfor
promoting widespread adoption of this technology. The : U e
authors hypothesize that a data-driven method for extr@ctiwere recorded over several online sessions and compared to
subject-speci®c electrophysiological correlates uwoheyl
intuitive BCI control strategies will satisfy the above criteria

and facilitate a BCI system that is intuitive, robust anchpies  2-2. Subject recruitment

rapid user training. The study was approved by the University of California, hevi
This paper presents a novel electroencephalogram (EEG)s+it tional Review Board. Nine subjects were recruitad a

based BCI system for in@ui'give, gelf-paced_ contr?I of thﬁave their informed consent to participate. Their demdgjiap
ambulation of an avatar within a virtual reality environmeny,ia are shown in table

(VRE). This BCl-controlled walking simulator employs a
data-driven, subject-speci®c EEG decoding model, which
enabled nine subjects (one with paraplegia due to SCI) 10™
use Walklng KMI to achieve intuitive control of the avatar'SEaCh Subject was seated in a chair approxima’[e|y 1 m from
ambulation after a very brief training session. This sirtarla 3 computer monitor that displayed either textual cues fguri
provides a similar, albeit virtual, experience to the opiereof  training sessions) or the VRE (during online sessions). EEG
a potential BCl-controlled lower extremity prosthesisthout \as recorded using a 63-channel EEG cap (Medi Factory,
the associated physical risks3. In addition, the use of VRE Heerlen, The Netherlands) with Ag-AgCl electrodes arrange

in the context of BCI has been shown to reduce the decodiggcording to the extended 10-20 International Standard.
error [14]. The ability to rapidly achieve purposeful control ofconductive gel (Compumedics USA, Charlotte, NC) was
an avatar within the VRE represents a necessary step towaggglied to all electrodes and the 30 Hz impedances between
successful integration of EEG-based BCI systems and pdilysigach electrode and the reference electrode were maintained

random walk Monte Carlo simulations.

Data acquisition
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at <10 KA by abrading the scalp with a blunt needlewere enhanced and the dimension was further reduced by
Two NeXus-32 EEG systems (MindMedia, Roermond-Hertesjther approximate information discriminant analysisA)

The Netherlands) were linked together and used to amplifg4, 25] or Fisher's linear discriminant analysis (LDA)
and digitize (sampling rate: 256 Hz, resolution: 22 bit§26]. The choice between AIDA and LDA was determined
built-in anti-aliasing ®lter: 27% of sampling rate) the EE®ased on the average classi®cation accuracy describesl at th
signals. Signals were streamed in real-time to a computer and of this paragraph. The combination of these methods
subsequently re-referenced in a common average mode. Datdds a piecewise linear feature extraction mapping that
acquisition and analysis were performed using custom-maaigproximately maximizes the mutual information between

MATLAB ™ (MathWorks, Natick, MA) programmes. the features and class labeld34]. A detailed account of
these techniques can be found &2[23, 25]. This resulted

2.4. Training procedure in the extraction of one-dimensional (1D) spatio-spectral
features:

To facilitate intuitive control of the BCI, subject-speci®EG
decoding models were generated to differentiate betwe&@ EE fDT8c.d/ 1)

underlying idling and walking KMI. In addition to being whered 2 R is a single-trial of EEG datd is the number
more intuitive than visual motor imagery, KMI is knowngffrequency bins per chann@js the number of retained EEG
to pI’OVide better Sepal’abi|ity of EEG for BCI application%hanne|5,8c . RB£C | RMis a piecewise linear mappn’]g
[15]. To this end, subjects were instructed by textual cuggm the data space to amdimensional CPCA-subspace, and
to generate walking KMI (i.e. imagine themselves walkingy : R™1 R is an AIDA or LDA transformation matrix. Once

and idling KMI (i.e. relax), while their EEG data werejp gpatio-spectral features were extracted, a linear Bayes
recorded. The textual cues alternated every 30 s for a tofdssi®er: .

of 10 min. At the same time, the EEG data were labelled i PifY e

. ) o . 2 ; djfr> PW T
as either walking or idling by a corresponding computer 2 w- i p Wif?> P 2
signal recorded by an auxiliary data acquisition system i ’ . . ]
(MP150, Biopac Systems, Goleta, CA). The labelling an§@s designed, whei.1 jf*/ andP.W jf’/ are the posterior
EEG signals were synchronized by sending a common pugr@babnlt’!es of |d||rjg and walking classes glven_the obedr
train to both the MP150 and NeXys32 data acquisition feature,f”, respectlvely,_ and were calculateq using the Bayes
systems. Electromyogram (EMG) activity was not recordddle. Note that the classi®&) (tilizes the maximum posterior
to monitor for minor limb movements, since increased EM@¥obability (MAP) rule. The classi®cation accuracy of the
are often observed during KMLE+19]. Instead, the subjects Bayesian classi®eP) was then assessed by performing ten
were instructed to refrain from moving during the traininguns of strati®ed tenfold cross-validation (C)]
procedure, which was enforced by observing the procedarean  This above procedure was systematically repeated

discarding the entire session if it was considered contategh t0 ®nd the optimal frequency range(]. Briey, the
by movements. lower frequency bound was increased in 2 Hz steps until

the classi®er performance stopped improving, allowing the
optimal lower frequency boundF_, to be determined.
The optimal higher frequency bounéy, was found in a
The training EEG data were analysed of ine to generatesimilar manner. The optimal frequency range, the list of
subject-speci®c decoding model. First, the EEG and lalgelliretained channels (RC) after artefact rejection, the featu
signals were aligned using the common synchronizatiorepulsxtraction mapping, and the classi®er parametersbreaferre
train. In addition, EEG channels with excessive EMG agtivitto as the decoding model, were then saved for real-time EEG
were excluded from further analysis using an iterativefacte analysis. Finally, the signal processing, feature exwacand
rejection algorithm20]. The pre-processed continuous 10 mirlassi®cation algorithms were implemented into the BCI
EEG record was then split into 30 s long segments of idlingpbftware and optimized for real-time operation.
and walking states based on the labelling signal. Due to
uncgrtainties ip timing between the computer cue and thes opline signal analysis
subject's reaction, the ®rst 8 s of each state were removed
from analysis. Each remaining 22 s EEG segment was thenring online operation, blocks of EEG data were acquired
divided into ®ve 4 s long non-overlapping trials for a total eevery 0.5 s. This rate was limited by the computer processing
100 trials. speed and was empirically found to ensure data acquisition
The labelled EEG trials were then fast Fourier transformewthout dropping packets. The EEG data were then divided
(FFT), and their power spectral densities were integratétio 0.75 s long segments and were processed as described in
in 2 Hz bins that were centred at; 3;:::; 39 Hz, section2.5 Note thatthis segmentlength provided an accurate
yielding 20 power spectral values per channel. Note that théstimation of EEG spectral power even at the lower end of
resulted in high-dimensional data {000 dimensions), which physiologically relevant frequencie&(]. Subsequently, the
signi®cantly exceeded the number of trials, thereby cgusinEEG signals from artefact-prone channels were excludet, an
small sample size problen2]]. Therefore, the dimension of the remaining EEG data were transformed into the frequency
the input data was initially reduced using classwise ppaci domain by FFT. The power spectral densities over the optimal
component analysis (CPCA2Z2, 23]. The class differences frequency range were calculated and used as an input to the

2.5. Of ine signal analysis and decoding model generation
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pawif=1, DPetween the two approaches. For example, the brain switch
toggles between idle and active states with a single motor
imagery, and once the system switches from one state to
another, the motor imagery is no longer required. On therothe

hand, our system requires two motor imageries, and to remain
in the present state, the corresponding motor imagery must
Figure 1. The BCI system is a binary state machine with idling andya g\;stained. While this may increase the mental workload

walking KMI states represented by circles. The state transitions are,

represented by arrows, with transitions triggered by the conditionsOf the subject, this approach is more intuitive because @f th

shown next to the arrows. Self-pointing arrows denote that the 131. correspondence between motor imageries and intended
system remains in the present state. actions.

PWIf <Ty POVIf) > Ty

PWIf)<T,

feature extraction algorithni). The posterior probabilities of 2.8. BCI and VRE integration

idling and walking classes given the observed EEG feature ) .
were then calculated using the Bayes rule. The VRE was constructed using Garry's M&dsimulated

physics environment (Valve Corporation, Bellevue, WA)dan
consisted of a "at grassland with ten non-player characters
(NPCs) standing in a straight line. The course lengthmw&20
Prior to online BCI operation, a short calibration procedumbody lengths ¥ 210 m, assuming a body length of 1.75 m)
was performed to determine state transition rules suitfanle along the users' avatar linear path (see ®@)rd his design
self-paced online BCI operation. This is necessary becauséntended to facilitate a goal-oriented online test inatihthe
unlike of ine analysis that is based on well-segmented arsdibjects utilized walking KMI and idling to walk the avatar
labelled EEG trials, online data segments may lie at claBsward and stop by each NPC, similar td]. Further details
transitions. This would cause the MAP rulg) (to create of the online evaluation are described in seciof
an excessively noisy state transition sequence, which may To interface the BCI software and VRE, a virtual joystick
frustrate the user during online BCI operation. A similaprogramme (Parallel Port Joystick1]) was used. To this
calibration approach was found to be effective in relatéfd seend, a @C dynamic-link library was developed to relay BCI
paced BCI studies3] 20, 28]. commands to move/stop the avatar via the virtual joystick.
The self-paced BCl operation is modelled as a binary stafally, a custom-made C# programme performed optical
machine (see ®gurB, where state transitions are triggere¢haracter recognition on the position readouts from the ¥RE
by comparing the posterior probabilities to suitably chiosedisplay (see ®gur®) in order to automatically track the
thresholdsT; andTy . The system transitions from the idlingsubject's online BCI performance.
to walking state wherNW jf?/ > Ty, where W jf?/
is the posterior prgbability of the walking class given the g online performance and assessment
observed featuref?, averaged over the most recent 1.5 s
of EEG data (note that averaging may further smooth tH® assess the online BCI performance, subjects used walking
state transitions). Conversely, the system transitions from tk®1l to move the avatar to each NPC and idling KMI
walking to idling state whenevePNW jf?/ < T,. When to stand still within a two-body length radius (centred at
T 6 MWW |f? 6 T, the system remains in the presenNPC) for at least 2 s. A short video demonstrating the
state. In summary, unlike the MAP rul@)(that essentially task is provided as supplementary material, available from
usesT, D Tw D 0:5, the proposed scheme requires morgfacks.iop.org/JNE/9/056016/mmed&imilar to the training
substantial evidence before state transitions are iadidfnot, procedure, the subjects were instructed to refrain fromingpv
the default behaviour of the system is to remain in the pteseémnd were asked to repeat the task if movements were detected.
state, which also reduces the subject's mental workload. Each subject repeated this task over ®ve sessions, with all
To determine the optimal thresholds, the BCI system ra&essions completed within a single day. Two performance
in the online mode while subjects were prompted to alternateeasures were recorded during each session: the time taken
between idling and walking KMI for a total of 2 min. to complete the course and the number of successful stops.
During each mental state, the posterior probabilities weSbjects received one point for idling the avatar within the
calculated as in sectidh6, and their histogram were plotted.designated stop for at least 2 s; therefore, the maximum
Based on these histogramgs, the threshelds were initialyccessful stop score was ten points. In addition, onlyctiéna
choser@as:TW D median FNij'-’ 2W/ , and T, D ofthe point was awarded for dwelling between 0.5 and 2.0 s.
median YW jf?2 1/, where NWjf? 2 W/ and Note that subjects were not penalized for dwelling longer
MW jf? 2 | / represent the posterior probabilities of walkinghan 2 s, however, this will inevitably increase the coniptet
given that the subject was instructed to engage in walkitigne and therefore lower the overall performance. A 20 min
KMI and idling, respectively. A short online test was theriime limit was enforced, beyond which the online session was
performed and based on the subject's feedback, thesel initigerrupted and the number of successful stops achieved thu
threshold values were further adjusted priorto onlineapen far was recorded. Ideally, it should take on average 18 s to
in order to help optimize the performance. walk from one NPC to the next without stopping, with the
While this approach may appear similar to the concefital course completion time of 211 s (191 s for walking and
of a “brain switch' 9, 30], there are signi®cant differences20 s for idling).

2.7. Online calibration
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w100 %

Figure 2. The VRE with the BCI-controlled avatar in third person “over-the-shoulder' view. Shown next to the avatar is an NPC and a traf®c
cone. The position/speed readouts are shown in the top righéico

2.9.1. Control experiments.The numbers of successful stopgstimated using the Parzen window meth®d B3]. Through

and completion times were compared to those achieved &gch subject's observed performance point (consisting of
random walk to determine whether purposeful control waes successful stops and completion time pair), a constant-
attained. Random walk performances were simulated kglue PDF contour was drawn. The volume under the PDF
sampling the posterior probabilities uniformly betweemd a outside the contour was then found by numerical integration
1 and applying the state transition rules outlined in secti@ effectively de®ning thp-value (the null hypothesis being that
with the subject-speci®c threshold valugs,and Ty, . The the subjects’performances are no different from randork)wal
random walk simulator was also allotted the 20 min timBurposeful control was de®ned as the ability to complete the
limit, and the number of successful stops was calculated sk within 20 min with performances signi®cantly differen
the same manner as above. To facilitate statistical testifigm random walk in a multivariate analysis.

1000 Monte Carlo runs of the random walk simulation were

performed. The subjects' performances were then compa@dResults

to those of the Monte Carlo simulation, and empirical p-ealu

were calculated. An additional control experiment coesist 3.1. Of ine performance

of an able-bodied subject manually performing the same t

. S . a'Fhe nine subjects underwent training data collection as
with a physical joystick.

described in sectio2.4, and subject-speci®c EEG decoding
models were generated as described in sectién CV of
2.9.2. Statistical tests. The 2D probability density function these models resulted in classi®cation accuracies rafiging
(PDF), with number of successful stops and completion timég.3% to 94.5% (table), with p-values< 0:01 (the null
as variables, of each subject's simulated random walk whgpothesis being de®ned as having a chance level clagsi®cat
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Figure 3. Spatio-spectral feature extraction maps corresponditigetd2+14 Hz frequency range for subject A2. Dark colourd éred

blue) represent the areas that were responsible for ergtitrdifferences between idling and walking KMI. Since thetdiee extraction

method is piecewise linear (see sectibf), there are two maps: the map on the left (right) corresponds to the subspace adapted to the idle
(walking) class, respectively.

Table 2. Of ine performances represented as classi®cation Table 3. The chosen values of threshol@sandTy .

accuracies estimated with ten runs of strati®ed tenfoldT@¥. .

classi®cation accuracy is de®ned as the probability oéctbyr Subject T Tw

classifying a trial given the featuré?, i.e. Al 053 0091

P.correcf?/ D P.1 jf?2 1 /P.1 /CP.W jf?2 W/P.W/, where AD 024 064

P.l jf?21/andP.W jf?2 W/ are de®ned in sectich5, and A3 019 056

P.1 / andP.W/ are the prior probabilities of idling and walking Ad 0'43 0158

classes, respectively. The number of RC after artefact rejection and A5 0'55 0'57

the optimal frequency range corresponding to each subjetthe A6 0'53 0161

performance are also included. A7 0:41 0:43
Subject P.correctf?/ p-value RC  Freq. band g‘g %%% %‘g;
Al 88.38 0.7% 127£ 1016 54 6+£20 Hz
A2 86.68 0.8%  B56£ 10> 54  8+24Hz
A3 76.08 1.3%  905£ 10® 54 6x20Hz 3.2. Online calibration
A4 80.98 1.2%  135£ 101 32 4+40Hz ) ) ) )
A5 67.48 2.2%  204£ 104 54 8+40Hz After a short calibration procedure (described in secfio,
A6 72.58 1.6%  235£ 10° 42 4+18Hz the distributions of the posterior probabiliti€s W | f*/, were
A7 64.38 1.1%  176£ 10°® 50 6+40Hz estimated as histogram (see ®gbyeNote that in the ideal
A8 64.58 1.8%  180£ 107 25 4x40Hz situation, the distribution oP.Wjf? 2 W/ should cluster
S1 9455 0.8%  626£ 10 53 8%40Hz around 1, whereaB.Wjf? 2 | / should cluster around 0. In
A1-8 75.18 9.5% + + - . L L
Al 7728 11.0% + + + reality, due to the inherent noise in EEG, these distrimgtio

will have some overlap. The state transition thresholgs,
andTy , were then determined and their values are shown in
table 3. Also, if EEG data carried no class information, the
accuracy of 50%). The average of ine performance of the-ablevo thresholds would be equal W/ (0.5 in this study).
bodied subjects was 75.1%, compared to the 94.5% accur&uy the other hand, if classes could be perfectly decoded from
of the SCI subject. EEG data, the threshold valugs and Ty, would approach

Further analysis of the subject-speci®c feature extractid and 1, respectively. The valuesHf and Ty, varied across
maps demonstrated that the most informative features fbjects from 0.19 to 0.55 and from 0.43 to 0.91, respegtivel
classi®cation in able-bodied subjects were the EEG powarsd as apparent in table the thresholds for all subjects were
in the 4+18 Hz frequency range over the lateral centralfoentseparable. In addition, the calculated value$pfwere found
parietal areas (see ®guBe However, for the SCI subject to correlate with the of ine performances shown in taBle
(subject S1), the EEG powers in the 14+18 Hz frequency ran@éeD 0.87, pD 0.002). However, the same was not true for
over the mid-central areas were the most informative featurT; (¥2D 0.05, pD 0.90). Finally, it was found that the of ine
for classi®cation (see ®gute performances also correlate with the separabilitylypf and

a 32-channel EEG montage was used due to technical
dif®culties.



After completing 1000 Monte Carlo random walk trials per
subject with the threshold parameters given in taklehe
2D PDF contours were constructed and the empipeadlues
of the subject's online performances (numbers of successfu
stops and completion times) were calculated. The online
performances, the corresponding empirical p-values, bed t
2.9, the online performances of allrandom walk PDF contours of ®ve representative subjects
subjects operating the BCl-controlled walking simulaterey (including the SCI subject) are shown in ®géréverall, in
evaluated by comparing the task completion times and th8 out of 45 online sessions, subjects achieved perfornsance
successful stops to those of the simulated random wathat were signi®cantly different (i.e. “outside of the coms')
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2.9.2 and are colour
coded by their signi®cance level (see legend). The random walk PDFs are displayed as contours. Subjects A8 (A7) had the best (worst)
online performances, respectively. For subjects Al and S1, the random walk simulation did not complete the task within the allotted 20 min,
hence contours are not shown.

from those of random walkp(< 0.01). At a signi®cance level As previously mentioned, based on the de®nition in
of 0.05, performances were different from random walk ieection 2.9.2 purposeful BCI control of the avatar was

44 sessions (subject A7 had a single session with a nathieved by all subjects in 44 out of 45 online sessions. The
signi®cant performance). In addition, the average coioplet performance breakdown according to individual measures is
times and successful stops are summarized in tailete that as follows. Subjects A1 and S1 achieved purposeful control
the completion time consists of a ®xed walking time (191 s)ith superior performance in both measures. Subjects A4+
and a variable amount of idling time. A6 achieved purposeful control with superior performance



Figure 7. Time-space course of a representative online session for
subject A8. The pink areas mark designated stopping zorrasg®
segments mark false starts. In order to ®nish the course, a subject is
required to walk out of the last stopping zone.

Finally, multiple linear regression was used to evaluage th
correlation between of ine and online performances. More
speci®cally, of ine performance was treated as a dependent
variable with completion times and numbers of successful
stops as the regressors. A moderately positive correlatisn
found with respect to both regressors with a goodness of ®t
R? D 0:2091 p D 0.0073).

4. Discussion and conclusions

4.  This study reports on the successful implementation offa sel

Finally, to demonstrate the performance level achievagle paced BCI-controlled walking simulator in which eight able
manual control, an able-bodied subject performed the tas&died and 1 SCI subjects acquired intuitive purposeful BCI
with a physical joystick. The manual joystick performanaesw control of the avatar's linear ambulation after only a 10 min
signi®cantly different and superior to the BCI performarioe training session followed by a 2 min calibration sessiore Th
terms of completion timeg(D 0.0002) but was not different rapid training and acquisition of purposeful BCI controlreve
in terms of the number of successful stop$X0.086). facilitated by using a data-driven machine learning metiood

Figure7 shows a representative time-space course of ogenerate subject-speci®c EEG decoding models. The dgcodin
online session for subject A8. In this session, not only dithodels were validated ®rst of ine and then during online
the subject complete the course with the maximum succesd@| operation. These results indicate that the system tegor
stops and a short completion time, but also he had only twere may satisfy the proposed requirements of an ideal BCI-
false starts (moving when not supposed to) and no false stdpser extremity prosthesis (robustness, intuitiveness, and short
(stopping when not supposed to). Over ®ve online sessiotnajning time) by using a data-driven machine learning rodth
this subject averaged 0.4 false starts and 2.6 false stgps.ahd it may be feasible to implement such a system in the near
factoring in the duration of false starts and stops, as wéllture.
as the completion time, these correspond to error rates of With the exception of the authors' preliminary wor][
0.42% and 3.34%, respectively. The online performances tbfs study represents the ®rst demonstration of integyatin
the other subjects were not recorded with this level of tletdiEG-based BCI with a VR walking simulator. A comparison
(the computer code was modi®ed in the late stage of the stldyween this study and related BCI-VRE studi#g, [L3] is
to accommodate for this function), and so it is not possible given in tableb. Note that the present approach utilizes KMI of
state their exact false start and false stop rates. Singeciubwalking/idling as a control strategy, which intuitively tahes
A8 achieved the best online performance, it is likely thaeot the task. On the other hand, the study 18][ and especially
subjects' online error rates were higher than the numbetse one in [L4], were less intuitive. Furthermore, the present
reported above. Therefore, while not universally applieab approach requires signi®cantly shorter training timereefee
the results presented in ®gutdlustrate the level of control subjects are able to gain online BCI control. With the présen
achievable by this BCI system. approach, both BCl-five and BCl-experienced subjects



able-bodied subjects in this study predominantly imagined
the arm swinging process of walking as opposed to the leg
movement component. It is also possible that due to the
extremely small sample size (only 100 training EEG trials),
the relative contribution of other potential brain repreaéion

8] KMI of walking/idling 12 min 3 AB areas (e.g. lower extremity motor areas) was masked by a

Pfurtschelleet al[14] KMI of foot/hand 3t5mo 3AB more dominant arm swing imaggry. in these maps. In contrast,
movement due to complete motor paraplegia in the SCI subject, walking

Leebet al[13] KMI of foot 4mo  1SCl KMI may be a mental task that is as vivid as attempted leg
movement/idling movements or executed walking. These hypotheses could not

be formally tested given the limited population size. Hipal
Ig?iven that the important areas of these feature extractipsm
aje highly localized, it may be possible to further reduce th
number of EEG channels from 25+54 (see té)lo » 20 or
ess.

were able to achieve purposeful online BCI control withi
minutes as opposed to months required in the other studies
addition, this system has been tested in a substantiafigdar

population of subjects, suggesting that it may generalzab The proposed data-driven machine learning methodology

Finally, a direct comparison OT the reSU|t.S between th'q)stuwas able to produce subject-speci®c decoding models that
and related BCI-VRE studies is not possible due to variation : . 2
in experimental desians accommodate for the neurophysiological variations across
P gns. subjects. This is especially important for BCI users with SC
due to potential post-injury cortical reorganization. Neyn
4.1. Of ine performance recent fMRI studies9+12] report on signi®cant changes in

It follows from table 2 that idling and walking KMI states _motor cortical representation areas for lower extremityano

could be decoded from underlying EEG signals with moderaf@agery following SCI. Thus, the involvement of classical
to high accuracy. Furthermore, a 10 min training session wi&/king KMI representation areas seen in subject S1 may
suf@cient for a data-driven machine learning algorithm et be universally present in SCI individuals. This further

generate subject-speci®c EEG decoding models. ThesesnodBfierscores the importance of a data-driven EEG decoding
achieved of ine classi®cation accuracies between 64.3% 4f°de!- On the other hand, its lack of speci®city may mean that

94.5% (mean: 77.2%), which were signi®cantly superior fge optimal spatio-spectral features identi®ed by thisehod

random chance (50%) with-values as small as 18%. This are not exclusively associated with walking, but also with

was true even for BCI-ve subjects. Also, note that théwn-ambulatory leg or foot movements. Hence, additional

subject with SCI achieved the best of ine performance, \hhicStUdieS are necessary to better pinpoint the source ancrzdtu

may be encouraging for the development of future BCI_IOW&europhysiologicaI signals underlying both walking KMtan
extremity prostheses in this population attempted walking in this population. Given the limitedrsid

The EEG decoding models also yielded feature extracti&?fno'se ratio and resolution of EEG, this feat may requies t

maps (e.g. ®guresand4) that could be used to uncover the'S€ of invasive recording modalities.

brain areas and frequency bands that differentiate thegdli ) o
and walking KMI behaviours. In the able-bodied subjects, tif+-2. Online calibration
EEG features responsible for encoding the differencesd®iw the state transition thresholds determined in the online

the two states were the powers inthend - EEG bands from gjinration session (tabt®) demonstrated that the transitions
the lateral central and lateral centro-parietal elecsodde fqm idling to walking states (and vice versa) were highly
activity measured by these electrodes is most likely laealli separable. Despite the limited sample size, the values of
to_thelateral sensorimotor cortex, whichis typically asated appeared to exhibit a positive correlation trend with
with hand and arm movements. On the other hand, the M@ ofine performances. This further validates the prabs
informative features for the SCI subject were the EEG poweggcoding methodology and its translation from of ine toinal
inthe* and  bands over the mid-central electrodes. Theggeration. Note that the threshold values also affected the
electrodes are likely to record the activity originatingrfr the performance of simulated random walk (tajeIn instances
medial sensorimotor cortex, where the leg and foot corticglere the values ofw were high, such as in subjects Al
representation areas are classically located. Hencepéaap ang S1, the random walk simulator had dif®culty moving the
that there is a divergence between the brain areas emplgyegi0atar and consequently could not ®nish the task within the
able-bodied subjects and the SCI subject while undergoing min time limit. On the other hand, the low valuesTpf(e.g.

the walking KMI. It is possible that these differences argypjects A1+A3 and A8) resulted in the random walk simulator
simply caused by different mental strategies employed by thaying dif®culty stopping the avatar and therefore yielded
subjects. This may be because unlike simple motor imagerig® successful stop scores. Finally, when the two threshold
often used in BCI studies, such as ®st clenchB% 5] or \ere close to each other and around the chance level, such as
foot tapping B5], walking KMI emulates a highly complex jn subjects A4+A6, the random walk simulator ‘inched' the
set of upper and lower extremity movements for which theggatar forward, thereby achieving high successful stopesco
may not be a universal motor imagery strategy. Based @fthe expense of longer completion times. In summary, these
their feature extraction maps, it can be hypothesized th@iservations are consistent with the ideal conditions eher
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BCI system, namely intuitiveness, robustness, and short
training time. First, the operation of the system was inteit
as it enabled subjects to use walking KMI to control the
ambulation of the avatar. Secondly, the system was robust
in that the data-driven decoding methodology was able to
_ _ successfully accommodate for subject-to-subject variatin
4, the subjects’ average online performancgye neurophysiological underpinnings of idling and watkin
measures ranged from 228.8 to 410.6 s for completion tim&| pehaviours (e.g. differences between able-bodied and

and. from 7.65 to 9.34 .for. number_ of successful stops, Wi@a subjects). Finally, the system required only a short
subjects A8 and S1 achieving the highest number of sucdesgflining time, as BCI control was attained after only a 10 min

stops. While the performance of subject S1 is encouragingydh g training data collection procedure followed by a 2 min
is unclear whether this generalizes to a population of SChlibration session. To determine the suitability of thetegn

Z‘:'V'd"uali'. Futrtr:jermorei mt a(ljl but one ?r;lgglsess:orlt @U o5 abasis for future BCI-controlled lower extremity prestes
) all subjects demonsirated purposefu controt. to restore ambulation, its function must be further tested

Wh"e _there Is a positive corrglatlon between the Oﬁn?n a population of individuals with paraplegia due to SCI.
classi®cation accuracy and online performance meas

Y%2ed on the results achieved in this study, the success

. 0 . )
(se_e section3.3), only 21% of the ofine cla_55|®_cat|on of the system in a population of SCI subjects is a realistic
variance can be accounted for by the completion times and

number of successful stops. This indicates that of ine arPchpOS'tlon'
online performances are only moderately coupled, which may
have several underlying causes. First, the high variglolit Acknowledgment
online performances (see ®g@and table4) may cause a
poor linear regression ®t. Second, a linear regression otay This study was funded by the Roman Reed Spinal Cord Injury
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+
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goal be achieved, it could further justify the pursuit of BCI quantitative ultrasound parameters, and fracture incielenc
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and McFarlin J The medical management of pressure
ulcersSpinal Cord MedicineBPrinciples and Practice
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