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Abstract— Electrocorticogram (ECoG)-based brain computer
interfaces (BCI) can potentially control upper extremity pros-
theses to restore independent function to paralyzed individuals.
However, current research is mostly restricted to the offline
decoding of finger or 2D arm movement trajectories, and these
results are modest. This study seeks to improve the fundamental
understanding of the ECoG signal features underlying upper
extremity movements to guide better BCI design. Subjects
undergoing ECoG electrode implantation performed a series
of elementary upper extremity movements in an intermittent
flexion and extension manner. It was found that movement
velocity, θ̇, had a high positive (negative) correlation with
the instantaneous power of the ECoG high-γ band (80-160
Hz) during flexion (extension). Also, the correlation was low
during idling epochs. Visual inspection of the ECoG high-γ
band revealed power bursts during flexion/extension events that
had a waveform that strongly resembled the corresponding
flexion/extension event as seen on θ̇. These high-γ bursts
were present in all elementary movements, and were spatially
distributed in a somatotopic fashion. Thus, it can be concluded
that the high-γ power of ECoG strongly encodes for movement
trajectories, and can be used as an input feature in future BCIs.

I. INTRODUCTION

Brain-computer interface (BCI)-controlled upper extremity
prostheses are a much sought-after application to restore
upper extremity function and independence after paralyzing
conditions such as cervical spinal cord injury, subcortical
stroke, or brainstem lesions. Recently, there has been a grow-
ing interest in using electrocorticogram (ECoG) as a long-
term signal acquisition platform for BCI-control of upper
extremity prostheses. Several studies have shown that ECoG
signals can be used to decode movement trajectories of the
arm and fingers, thereby indicating that the ECoG-based BCI
platform for upper extremity prosthesis control is promising.
Prior studies used local motor potentials (LMPs) [1], [2], [3],
[4], [5] and the high-γ band [2], [3], [6], [7], [5] of ECoG
to decode trajectories of repetitive finger or arm movements.
The maximum correlation coefficients between the actual
and decoded finger trajectories averaged across all subjects
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within each study ranged from 0.32 to 0.64. Similarly, the
correlation between the actual and decoded 2D arm trajectory
was 0.3 in [8], and varied from 0.50 to 0.62 in [9].

The development of an ECoG-based BCI-controlled upper
extremity prosthesis to restore motor function and indepen-
dence to paralyzed individuals must still overcome many
limitations. First, with the exception of [2] and [7], the
existing decoders were unable to accurately predict idling
periods, or these idling periods were completely omitted.
Hence, it remains unclear how well idling periods can be
decoded from ECoG signals. Second, the ability to decode
movement trajectories has mostly been studied in the con-
text of repetitive movements. In everyday life, however,
intermittent movements of upper extremities are much more
common, so it remains unclear if existing decoders can be
generalized to these types of movements. Third, the majority
of ECoG decoding studies have focused on finger or 2D
arm movement trajectories [8], [9]. However, since activities
of daily living require many unique configurations of upper
extremities, a BCI-controlled upper extremity prosthesis will
require at least 6 degrees-of-freedom (DOF) to restore inde-
pendence to a user [10]. Therefore, the moderate decoding
accuracies reported in the current literature may not be viable
for online BCI control of an upper extremity prosthesis.

To address the above limitations and unknowns, a better
fundamental understanding of how ECoG encodes upper
extremity movements is required. This may reveal more
salient features underlying upper extremity movements, and
may ultimately lead to the design of superior decoding
algorithms. In this exploratory study, the authors examine
the time-frequency characteristics of ECoG signals during
6 elementary upper extremity movements to increase the
fundamental understanding of ECoG motor encoding.

II. METHODS

A. Signal Acquisition

The study was approved by the Institutional Review
Boards of the University of California, Irvine and the Rancho
Los Amigos National Rehabilitation Center. Subjects were
recruited from a patient population undergoing temporary
subdural electrode implantation for epilepsy surgery evalua-
tion. Subject selection was limited to those with electrodes
involving the primary motor cortex (M1) upper extremity
representation area. Up to 64 channels of ECoG data were
recorded using a pair of linked NeXus-32 bioamplifiers
(Mind Media, Roermond-Herten, The Netherlands), and
signals were acquired at 2048 Hz with common average
referencing.
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The subjects performed six elementary arm movements
on the side contralateral to their ECoG electrode implant
[11]: 1. pincer grasp and release (PG); 2. wrist flexion and
extension (W); 3. forearm pronation and supination (PS), 4.
elbow flexion and extension (E); 5. shoulder forward flexion
and extension (SFE); 6. shoulder internal and external rota-
tion (SR). The trajectories of PG and W were measured by
a custom-made electrogoniometer [12], while the movement
trajectories of PS, E, SFE, SR were measured by a gyroscope
(Wii Motion Plus, Nintendo, Kyoto, Japan). The trajectory
signals, including position, θ(t), and velocity, θ̇(t), were
acquired using an integrated microcontroller unit (Arduino,
Smart Projects, Turin, Italy). ECoG data were synchronized
with the trajectory signals using a common pulse train sent
to both acquisition systems.

B. Task

The above elementary movements were performed se-
quentially from 1 to 6. Prior to each movement, the ap-
propriate physical sensor was mounted and calibrated using
conventional goniometry at 10◦ intervals throughout the
joint’s range of motion. Subjects then performed intermit-
tent alternating flexion and extension movements. A flexion
movement was performed until the end of the range of
motion. This was followed by an idling period (while in the
fully flexed position) for 3-5 seconds. Subjects then extended
to the end of the range of motion, and idled in this fully
extended position for 3-5 seconds. This was repeated 25
times for each elementary movement.

C. Time-Frequency Analysis

The temporal relationship between the γ-band power and
trajectory was explored by first calculating the ECoG instan-
taneous power:

Pn(t) = f(x2n(t)) (1)

where xn(t) is the bandpass filtered ECoG signal (80-160
Hz) at channel n and Pn(t) is its power, enveloped by a 1.5-
Hz low-pass filter, f(·). Subsequently, Pn(t) was segmented
into flexion, extension, and idle epochs based on θ̇(t). The
cross-correlations between Pn(t) and θ̇(t) were then calcu-
lated during flexion, extension, and idling epochs. The cross-
correlations during flexion and extension epochs were lag-
optimized, while idling cross-correlations were calculated at
zero lag. The procedure was repeated for all channels and
for all 6 elementary movements in all subjects.

III. RESULTS

Two subjects undergoing subdural electrode implantation
for epilepsy surgery evaluation were recruited for this study.
Subject 1, a 27-year-old female, was implanted with a 6×8
ECoG electrode grid on the right frontal-parietal area. Sub-
ject 2 was a 49-year-old female with a left frontal-temporal
8×8 ECoG grid and a posterior frontal-anterior parietal 1×6
strip. Their electrode placements are shown Fig. 1 (Note that
electrode numbers with the “G” prefix are from the main
ECoG grid, while “S” denotes the ECoG strip). Each subject

completed the motor tasks described in Section II-B, and the
ECoG signals were analyzed by the above procedure.

Visual inspection of the P (t) signals revealed a burst
of power that was time-locked to every intermittent flexion
or extension event, while the P (t) signal during idling ap-
peared noisy and chaotic. Additionally, the waveform of P (t)
during these bursts closely matched the visual appearance
of the extension and flexion waveforms seen in θ̇(t). A
representative set of tracings can be seen in Fig. 2. To
quantify this similarity, the cross-correlation between P (t)
and θ̇(t) during flexion, extension, and idling epochs were
calculated (see Section II-C). Based on the visual appearance
of P (t) and θ̇(t), the results were as expected: high positive
cross-correlation for flexion epochs, low correlation for idle
epochs, and high negative cross-correlation for extension
epochs. Representative correlation-lag diagrams for M1 elec-
trodes are shown in Fig. 2. The electrodes located over M1
were ranked based on the above correlation pattern, and the
top 1 to 3 electrodes were reported in Tables I and II.

Fig. 1. (Top) Magnetic resonance imaging (MRI) with electrodes localized
using the technique described in [13] (Subject 1). The black outlined
circles are electrodes that were recorded from (limited by amplifier channel
capacity). The green line delineates the central sulcus. (Bottom) A similar
image for Subject 2.

IV. DISCUSSION

Based on the visual similarity between P (t) and θ̇(t), as
well as the high positive (negative) cross-correlation values
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Fig. 2. Representative lag-correlation diagrams of Subject 1 (top) for movement types PG, E, and SFE, and of Subject 2 (bottom) for movements types
PG, E, and SFE. For each M1 electrode, the colors represent the cross-correlation at various lag times. The dotted line at time 0 sec, indicates the initiation
of movement. Flexion, idling, and extension have their own lag-correlation diagram. On the right is a representative segment of P (t) (blue trace) and
corresponding θ̇(t) (black) at the best M1 electrode.

during flexion (extension) epochs, it can be hypothesized that
ECoG high-γ power strongly encodes for elementary upper
extremity velocities. Conversely, idling periods are charac-
terized by a lack of correlation, and the P (t) signal appears
desynchronized (lower amplitude, noisy, and chaotic). Tables
I and II indicate that the electrode(s) on M1 exhibits this
correlation-lag pattern for all elementary movements. The
top-ranked electrode(s) tends to overlap across movement
types; they are more lateral for movements at distal joints

(PG, W, and PS), and are progressively more medial for more
proximal joints (E, SFE, and SR). These findings point to the
existence of separate, but somatotopically arranged neuronal
generators that drive each movement type. When active, these
generators appear to behave in a similar manner by producing
high-γ bursts. Finally, although maximum cross-correlation
for some flexion/extension epochs were found at positive
lags, Fig. 2 indicates that these values begin increasing before
the onset of movement, indicating that the high-γ bursts
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TABLE I
CROSS-CORRELATION RESULTS OF THE TOP CHANNELS FOR SUBJECT 1
DURING INTERMITTENT FLEXION (F) AND EXTENSION (E) MOVEMENTS,
AND IDLE (I). LAG TIME IN SECONDS ARE PROVIDED IN PARENTHESES.

Electrode ρ(PF , θ̇F ) ρ(PI , θ̇I) ρ(PE , θ̇E)

PG G20 0.75 (0.02) -0.21 -0.64 (0.01)
W G20 0.73 (0.44) -0.17 -0.55 (-0.11)

G28 0.56 (-0.11) 0.00 -0.58 (-0.03)
PS G28 0.47 (0.00) 0.03 -0.62 (-0.18)

G36 0.58 (0.43) -0.12 -0.45 (-0.42)
E G28 0.36 (0.18) -0.07 -0.38 (-0.56)

SR G28 0.45 (0.45) 0.10 -0.47 (-0.30)
G36 0.32 (0.50) 0.06 -0.39 (-0.24)

SFE G28 0.60 (-0.52) 0.05 -0.83 (0.27)
G36 0.56 (-0.41) 0.08 -0.47 (0.20)

TABLE II
CROSS-CORRELATION RESULTS OF THE TOP CHANNELS FOR SUBJECT 2.

Electrode ρ(PF , θ̇F ) ρ(PI , θ̇I) ρ(PE , θ̇E)

PG G56 0.76 (0.07) -0.10 -0.75 (0.04)
G47 0.49 (0.07) 0.03 -0.50 (0.10)

W S6 0.71 (0.09) 0.18 -0.65 (0.07)
G47 0.42 (0.02) 0.07 -0.41 (-0.02)
G56 0.61 (0.08) 0.02 -0.30 (-0.08)

PS S6 0.61 (0.08) 0.05 -0.60 (0.07)
G47 0.40 (-0.05) 0.05 -0.58 (0.00)

E S6 0.44 (-0.16) -0.37 -0.59 (0.13)
G47 0.45 (-0.28) -0.21 -0.34 (0.05)

SR S6 0.51 (0.18) 0.08 -0.32 (-0.34)
SFE S6 0.75 (-0.21) -0.20 -0.55 (0.23)

likely precede movement.
Although not explicitly shown in Fig. 2, a high correlation

between P (t) and θ̇(t) can be seen in electrodes in brain
areas outside M1. When the P (t) signal from these channels
is visually inspected, a pattern of high-γ bursts can be seen
with each flexion and extension event. For example, the
power bursts exist in the supplementary motor area and
posterior parietal cortex in all elementary movements types
in Subject 1 (i.e. G39 and G19, respectively). Also, in the
auditory cortex (i.e. G12-G16) in Subject 2, these power
bursts may be due to the auditory cues given to the subject.
These findings suggest that other brain areas behave similarly
to M1 when activated despite subserving different functions.

Despite minimal processing, the correlation between P (t)
and θ̇(t) at a single channel is already as high as (and
occasionally higher than) those reported in the prior liter-
ature [1], [2], [3], [6], [7], [4], [5], [8], [9]. Hence, the
authors hypothesize that using P (t) as an input feature for
future BCI decoding algorithms may significantly boost the
decoding accuracies. However, an additional fundamental
understanding of ECoG neurophysiology may be necessary
before a useful and generalizable model of upper extremity
movements can be designed. Specifically, it is unclear if
further spatial or spectral separation of individual movement
types, or flexion and extension generators, is possible. Cur-
rently, it seems that the same 2-3 M1 channels are involved
across all movements in both subjects, indicating that the
separate neuronal generators of upper extremity movements

are densely packed in a small area of M1, which may
make it difficult to resolve them [11]. This warrants further
investigation to determine how these generators can be better
distinguished, and subsequently exploited for BCI control.
This will require the application of more sophisticated signal
processing techniques, or possibly higher resolution signals,
such as those from mini- or micro-ECoG grids.

V. CONCLUSION

The time-frequency characteristics of ECoG signals may
be a good input feature for BCI decoders to control upper
extremity prostheses. Future work will focus on developing
methods that exploit the characteristics of P (t) to accurately
identify when movement is occurring, which movement(s) is
(are) occurring, and the direction of movement.
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