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Abstract—Source signals that have strong temporal correlation
can pose a challenge for high-resolution EEG source localization
algorithms. In this paper, we present two methods that are able
to accurately locate highly correlated sources in situations where
other high-resolution methods such as multiple signal classifica-
tion and linearly constrained minimum variance beamforming
fail. These methods are based on approximations to the optimal
maximum likelihood (ML) approach, but offer significant com-
putational advantages over ML when estimates of the equivalent
EEG dipole orientation and moment are required in addition to
the source location. The first method uses a two-stage approach in
which localization is performed assuming an unstructured dipole
moment model, and then the dipole orientation is obtained by us-
ing these estimates in a second step. The second method is based on
the use of the noise subspace fitting concept, and has been shown
to provide performance that is asymptotically equivalent to the di-
rect ML method. Both techniques lead to a considerably simpler
optimization than ML since the estimation of the source locations
and dipole moments is decoupled. Examples using data from sim-
ulations and auditory experiments are presented to illustrate the
performance of the algorithms.

Index Terms—Electroencephalography (EEG), magnetoencep-
halography (MEG), sensor array processing, source localization.

I. INTRODUCTION

LOCATING sources of cerebral activity using high-
temporal-resolution electroencephalography (EEG) and

magnetoencephalography (MEG) continues to be an active area
of research in neurological science [1]–[4]. Although in general
EEG/MEG techniques are reported to have limited spatial reso-
lution, high-resolution techniques such as multiple signal clas-
sification (MUSIC) [5], [6] and linearly constrained minimum
variance (LCMV) beamforming [7] can be used to cope with this
issue. Under certain assumptions, these techniques can resolve
very closely spaced sources with high accuracy. To obtain high
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spatial precision, these techniques normally require a large ar-
ray of sensors or electrodes for taking EEG/MEG measurements
that leads to a complicated high-dimensional inverse problem
with an infinite number of solutions. Thus, constraints must
be incorporated into the problem for an appropriate solution to
exist. In practice, a “forward” propagation model for the brain,
skull, and scalp is adopted, and then one attempts to estimate the
parameters of the model corresponding to the source activity.
One of the most commonly used forward models assumes that
the signal source in a small region of the brain originates from an
equivalent current dipole, and treats the dipole location and the
orientation and magnitude of the dipole moment as parameters
to be estimated [8], [9].

While approaches based on MUSIC, LCMV, and their vari-
ants have been proposed for EEG localization, their performance
degrades significantly if the source signals are highly correlated
in time [3], [10], [11]. In such cases, the dimension of the signal
subspace collapses, and the subspace is no longer spanned by the
lead-field vectors (LFV) of the sources, but rather by some lower
dimension linear combination. If prior information about the
correlated source locations is available and regions containing
these sources can be defined, a beamformer can be constructed
to locate and reconstruct the source in only one specified region
while rejecting the contribution of sources in other regions [11].
A similar idea is also used in the nulling beamformer of [3],
where nulling constraints (i.e., zero gain conditions) are added
to cancel signals from specific cortical locations. Unlike the
aforementioned beamformers, in which correlated sources are
suppressed except for the one to be reconstructed, the dual-
core beamformer [4] can simultaneously locate and reconstruct
correlated sources using a spatial filter that contains the LFV
of two dipole sources at a time. Variants of MUSIC such as
recursively applied and projected MUSIC (RAP-MUSIC) [12]
and first principal vectors (FINES) [13] have also been shown
to have some resilience to highly correlated sources. FINES
relies on partitioning the brain into smaller volumes that are
isolated via projections, and sources within each volume are
determined separately. If two correlated sources are in different
subvolumes, then the effect of the correlation can be mitigated
through the projection operation. RAP-MUSIC is a sequential
technique based on principal angles between subspaces, and has
been shown to be effective for highly correlated sources when
the number of available data samples is large.

Since both FINES and RAP-MUSIC require a computational
load beyond that of standard MUSIC and LCMV, researchers
have been led to study the performance of statistically optimal
methods such as maximum likelihood (ML) [14]–[17]. While
ML techniques do not have difficulty with highly correlated
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sources, they are known to be complex to implement. In par-
ticular, unlike MUSIC or LCMV, a direct ML implementation
does not allow one to decouple estimation of the linear parame-
ters (dipole orientation and moment magnitude) from that of the
source locations. Thus, a complex multidimensional nonlinear
optimization over both the location and orientation parameters is
unavoidable. Efficient implementations of ML estimate subsets
of the parameters (i.e., moment magnitudes, dipole orientations,
or positions) by fixing the others as constants, and then alternat-
ing through the subsets several times [17]. While this reduces
the dimension of the ML search at any given step, the search
must be repeated multiple times before convergence. If only
the location of the dipole is needed, one can reparameterize the
problem by absorbing the dipole orientation and moment to-
gether in an unstructured matrix that is estimated directly, and
only a one-time search over the locations is required [14], [18].
In one of the approaches presented in this paper, we show how to
use these unstructured ML (UML) location estimates to obtain
accurate dipole orientation and moment estimates in a second
step. We will refer to this method as “decoupled” ML (DML)
in the sequel.

As another computationally efficient alternative to MUSIC
and LCMV for highly correlated source scenarios, we also pro-
pose application of the so-called noise subspace fitting (NSF)
algorithm for localization and estimation of the dipole param-
eters, an algorithm previously developed for direction finding
using polarization diversity [19]. The NSF algorithm can be
viewed as a multidimensional generalization of MUSIC, and
has been shown to asymptotically have the same performance
as ML. The form of the NSF cost function allows the dipole
location and orientation parameters to be solved for separately,
and in fact the solution for the dipole orientation is obtained via
a closed-form equation that is more direct and simpler to imple-
ment than DML. Both DML and NSF share the following two
key advantages: 1) unlike MUSIC and LCMV and their deriva-
tives, they are able to provide accurate estimates in the presence
of highly correlated sources, 2) unlike ML, the dimension of
the search space is reduced by a factor of 2 since estimation
of the dipole orientation and moment is decoupled from that of
the location parameters. The performance of the DML and NSF
methods will be demonstrated using both simulations and real
data from several auditory experiments. While NSF is somewhat
simpler to implement than DML, we will see that DML enjoys
a slight performance advantage.

In the next section, we present the data model and assumptions
made in this study. Section III reviews the standard localization
techniques based on MUSIC, LCMV, and ML. The proposed
DML and NSF algorithms are then discussed in Sections IV and
V, respectively. Simulation results and real-data experiments are
described in Sections VI and VII, respectively. Finally, some
conclusions are offered in Section VIII.

II. STANDARD DATA MODEL AND ASSUMPTIONS

A. Current Dipole Data Model

Following the mathematical model of [5], [7], the outputs
of m sensors sampled at some time instant t are stacked in an

m × 1 vector x(t). The sensor array can be composed of ei-
ther electrodes as with EEG devices, detector coils as in MEG
systems, or both. In this paper, we will focus on the EEG appli-
cation, although from a mathematical standpoint, the techniques
we develop are applicable to MEG localization as well. If NS

dipoles are present at time t, the output of the array may be mod-
eled as a linear superposition of the signals from each source:

x(t) = As(t) + n(t)

= As(t) + AI sI (t) + w(t) (1)

where the NS × 1 signal vector s(t) is composed of the mo-
ment amplitudes of the NS source dipoles, n(t) ∈ R

m×1 is
composed of both background electronic/sensor noise w(t) ∈
R

m×1 , and contributions from interfering EEG sources that are
nonstimulus-related and, therefore, not of interest, AI sI (t). NI

represents the number of interfering dipoles and sI (t) ∈ R
NI ×1

contains the moment magnitudes of the NI interfering dipoles.
The matrix A = [a1 ,a2 , . . . ,aNS

] is comprised of NS vectors
of dimension m × 1 that correspond to the response of the array
to each source dipole. These response vectors are often referred
to as LFV. Similarly, AI contains the LFVs of the NI interfering
sources. The kth LFV ak (rk ,φk ) represents the response of the
sensor array to a unit-amplitude dipole located at position rk

with dipole orientation denoted by

φk = [φxk φyk φzk ]T . (2)

In practice, a current dipole is a good approximation for a small
source viewed from a remote field point [9] and its correspond-
ing LFV can be derived from multilayer spherical head mod-
els [8], [20] or based on realistic head measurements taken from
computed tomography or magnetic resonance imaging data [21].

The LFV model is typically decomposed into three parts, each
due to a separate orientation component:

ak (rk ,φk ) = G(rk )φk

= [gx(rk )gy (rk )gz (rk )]φk (3)

for k = 1, . . . , NS , where gx(rk ), gy (rk ), and gz (rk ) are the
m × 1 LFV’s that result from unit amplitude dipole sources
oriented in the x-, y-, and z-directions, respectively. If we stack
together the LFVs for the individual direction components of
the sources of interest, we can write

Gx(R) = [gx(r1), . . . ,gx(rNS
)] ∈ R

m×NS

Gy (R) = [gy (r1), . . . ,gy (rNS
)] ∈ R

m×NS

Gz (R) = [gz (r1), . . . ,gz (rNS
)] ∈ R

m×NS

and the lead field matrix A becomes

A(R,Φ) = Gx(R)Φx + Gy (R)Φy + Gz (R)Φz

= G(R)Φ (4)

where

R = [r1 , . . . , rNS
] ∈ R

3×NS

G(R) = [Gx(R) Gy (R) Gz (R)] ∈ R
m×3NS

Φx = diag{φx1 , . . . , φxNS
} ∈ R

NS ×NS
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Φy = diag{φy1 , . . . , φyNS
} ∈ R

NS ×NS

Φz = diag{φz1 , . . . , φzNS
} ∈ R

NS ×NS

Φ = [Φx Φy Φz ]T ∈ R
3NS ×NS .

Note also that there is an inherent scaling ambiguity in (1)
between each element sk (t) of s(t) and the corresponding ori-
entation vector φk . The ambiguity is usually resolved by con-
straining φk in some way, and absorbing any scale factor into
sk (t). For example, ‖φk‖ = 1 or φxk = 1 are common choices,
each with its own implications about the moment amplitude
sk (t) [19].

B. Assumptions

We will adopt the following assumptions regarding the data
model described earlier:

A1 The total number of dipole sources (stimulus and non-
stimulus related) of sufficient strength to contribute to
the model is less than the total number of sensors:
NI + NS < m.

A2 Any collection of p ≤ m LFV forms a linearly indepen-
dent set (in other words, the sensor array is unambiguous).

A3 The source signals from different dipoles may be highly
correlated, but they may not be 100% correlated with each
other (i.e., no dipole signal can be expressed as a linear
combination of the other dipole signals).

A4 The location of the NI interfering sources contributing
to n(t) is assumed to be time-invariant during the data
collection, but no other assumption is made about their
temporal statistics; they need not be white or even station-
ary. All other components of n(t) (due to electronic noise,
etc.) are assumed to be spatially white with equal variance
across all sensors.

Assumptions A2–A4 are standard for existing approaches de-
scribed in the literature. In most applications of interest, m is
large enough and NS is small enough for A1 to be reasonable.
Related to A3, the correlation properties of the dipole signals
s(t) are of particular interest in this study. Correlated cortical
activities often occur in practice and are thought to be the re-
sult of some type of functional connectivity between different
regions in the brain [22]. More heuristically, we may expect to
see highly correlated sources in EEG signals that are a result of
a particular stimulus; these signals are excited simultaneously
and often have similar evoked responses. As we will see, the
appearance of correlated sources will degrade the localization
accuracy of MUSIC and LCMV.

C. Dual-Condition Experiments and Null Projection

For EEG measurements, the signals of interest are very weak,
and embedded in strong, spatially correlated noise and interfer-
ence due primarily to background brain activity not related to
the stimulus. One approach to cope with this problem is to si-
multaneously estimate the interference statistics and the noise
parameters using the same data, collected over several experi-
ments involving repeated application of the stimulus [16], [17].
If the noise is further assumed to be space-time separable (i.e.,

the noise covariance matrix is modeled as the Kronecker prod-
uct of separate spatial and temporal noise covariance matrices),
the number of unknown noise parameters to be estimated can
be significantly reduced, but the stationarity of the noise in both
space and time is still required [17]. Another strategy in such
situations is to design experiments with dual conditions, one
prior to application of the stimulus (control state) and one after
the stimulus has been applied (activity state) [2], [23], [24]. In
principle, the control state data will contain only background
interference and sensor noise, while the activity state data will
contain similar noise and interference as well as the event-related
signals:

xC (t) = AI sIC (t) + wC (t)

xA (t) = As(t) + AI sIA (t) + wA (t).

To mitigate interfering EEG sources that are nonstimulus-
related, a null projection (NP) approach has been suggested [24].
In the NP method, a matrix H ∈ R

m×m−NI is found that is as
orthogonal as possible to the data collected during the control-
state:

Ĥ = arg min
H

‖HT XC ‖2
F (5)

where XC = [xC (1), . . . ,xC (nC )] represents the control-state
data and nC is the number of control state samples. To avoid
a trivial solution, the constraint HT H = I is incorporated, and
the solution Ĥ is the m − NI left singular vectors of XC cor-
responding to the smallest singular values. With this matrix
computed, the activity state data are then filtered to eliminate
the influence of the interference, as follows:

x′
A (t) = PH xA (t)

≈ PH As(t) + PH wA (t) (6)

where PH = ĤĤT . The NP approach has been shown to be
superior to techniques based on prewhitening in EEG scenarios
where temporal stationarity of the data in the control and activity
states cannot be assumed [24].

III. LOCALIZATION ALGORITHMS

We briefly review here the MUSIC, LCMV, and ML algo-
rithms for dipole localization incorporating the NP approach
for interference suppression. After application of NP, the activ-
ity state data will contain the filtered event-related signals and
background noise. We define the covariance of the activity-state
data as follows:

R̂′
A =

1
nA

nA∑

t=1

x′
A (t)x′

A
T (t)

=
m∑

i=1

λieieT
i = E′

SΛ′
SE′T

S + E′
N Λ′

N E′T
N (7)

where nA is the number of activity state samples, the eigenvalues
are ordered as λ1 ≥ . . . ≥ λm , the matrix E′

S = [e1 , . . . , eNS
]

contains the eigenvectors corresponding to the NS largest
eigenvalues contained in the diagonal matrix Λ′

S , and E′
N =

[eNS +1 , . . . , em ] contain the remaining eigenvectors. We refer
to E′

S and E′
N as the signal and noise subspace eigenvectors,

respectively. The value of NS is revealed by the number of
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eigenvalues in R′
A that are significantly larger than the variance

of the background noise.

A. Multiple Signal Classification

MUSIC [5], [6], [12] locates the dipoles as those whose LFV’s
are most orthogonal to E′

N , i.e.,

r̂, φ̂ = arg min
r,φ

VMU(r,φ)

= arg min
r,φ

φT G′T (r)E′
N E′T

N G′(r)φ
φT G′T (r)G′(r)φ

(8)

where r is the 3-D coordinates of a possible dipole, φ is its
orientation as defined in (2), and G′(r) = PH G(r). A natural
constraint for φ in this case is φT φ = 1, in which case mini-
mizing the MUSIC criterion becomes equivalent to finding the
minima of the following generalized eigenvalue problem:

r̂ = arg min
r

λmin(r)

G′T (r̂)E′
N E′T

N G′(r̂)φ̂ = λmin(r̂)G′T (r̂)G′(r̂)φ̂ .

The position estimates are found by viewing λmin as a function
of r and then searching for its minima. The orientation of the
dipole with location estimate r̂ is then taken to be the unit-norm
eigenvector associated with λmin(r̂). MUSIC is referred to as a
“scanning” method, since it relies on a scan of the 3-D volume
in order to localize potential sources. Note that MUSIC will fail
when any subset of the source signals are highly correlated, since
in this case E′

N will be orthogonal to some linear combination
of the LFV’s in a lower dimensional subspace, rather than the
LFV’s themselves [19].

B. Linearly Constrained Beamforming

The LCMV approach scans by forming “beams” that mini-
mize power subject to a unit gain constraint at each potential
source location [2], [3], [7]. This leads to finding the minima of
the following cost function:

r̂, φ̂ = arg min
r,φ

VLCMV(r,φ)

= arg min
r,φ

φT G′T (r)(R′
A )−1G′(r)φ

φT G′T (r)G′(r)φ
. (9)

The positions and orientations are then found in the same fashion
as in MUSIC:

r̂ = arg min
r

λmin(r)

G′T (r̂)(R′
A )−1G′(r̂)φ̂ = λmin(r̂)G′T (r̂)G′(r̂)φ̂ .

The LCMV approach also performs poorly for highly correlated
signals due to the fact that the LCMV minimization may cancel
the desired signal despite maintaining unit gain at the signal’s
location.

C. Maximum Likelihood or Least-Squares Method

The performance limitations of MUSIC and LCMV have led
some to consider ML approaches to the EEG source localiza-
tion problems. If the noise remaining after prewhitening or NP is

modeled as a spatially white Gaussian process, then ML is equiv-
alent to a least-squares fit of the model to the data [14], [15]:

V (R,Φ) = ‖X′
A − PA ′(R,Φ)X′

A‖2
F (10)

where

X′
A = [x′

A (1), . . . ,x′
A (nA )] ∈ R

m×nA

PA ′(R,Φ) = A′(R,Φ)[A′T (R,Φ)A′(R,Φ)]−1A′T (R,Φ)

A′(R,Φ) = PH A(R,Φ)

and ‖·‖F denotes the Frobenius norm. While the ML method is
immune to problems that result from correlated signals, it comes
at the expense of increased complexity in the optimization. In
particular, the ML approach is not a scanning method, and it
is not possible in general to decouple the estimation of R and
Φ, since the Φ parameters are embedded in the nonlinear in-
verse of the projection matrix. Instead, one must simultaneously
perform a constrained 6NS -dimensional nonlinear optimization
over 3NS location and 3NS dipole moment parameters. A more
efficient implementation is possible by alternately fixing Φ,R
and the moment magnitudes, and then estimating the others.
While the source localization step of this process requires a
reduced dimension (3NS ) search, several iterations of this pro-
cedure are required to obtain convergence of the estimates [17].

If one is only concerned with the locations of the dipoles
and not their orientation, a possible simplification is to assume
an unstructured dipole moment model in which the dipole ori-
entation is not assumed to be constant over the observation
interval [14], [18]. In the unstructured dipole model, the signal
emitted by a source is no longer modeled as a rank-one sig-
nal G(r)φs(t), where G(r) is m × 3, φ is 3 × 1 and s(t) is a
scalar. Instead, the signal is written as G(r)s′(t) where s′(t) is
3 × 1 and is left unparameterized. The unstructured model does
not require the dipole moment to be constant; in fact, it can be
arbitrary at every time t. This assumption may lead to degraded
estimation performance when the dipole moment is constant
(as we assume it to be), but it results in a simpler ML solution
since s′(t) can be estimated very simply, in closed form. The
unstructured signal model leads to the following modified ML
criterion:

VML(R) = ‖X′
A − PG ′(R)X′

A‖2
F (11)

where

PG ′(R) = G′(R)[G′T (R)G′(R)]−1G′T (R)

G′(R) = PH G(R) .

Minimization of (11) requires only a single 3NS -dimensional
search, but it can resolve fewer source locations. We will refer
to this approach as UML.

IV. DECOUPLED MAXIMUM LIKELIHOOD

As mentioned earlier, the performance of MUSIC and LCMV
will degrade in the presence of highly correlated sources. While
the ML method has no difficulty with correlated (or even co-
herent) sources provided NS is known, it requires a constrained
nonlinear optimization over a large number of parameters, which
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may be prohibitive. In this section, we show how to use the UML
location estimates discussed earlier to obtain separate estimates
of the dipole orientations and moment amplitudes.

Substituting the location estimates provided by UML into (1)
and (3), the activity-state data can be represented as (ignoring
noise for the moment)

X′
A = [G′(r̂1), . . . ,G′(r̂NS

)]

⎡

⎢⎣
φ1s1

...
φNS

sNS

⎤

⎥⎦

= Ĝ′

⎡

⎣
M1

...
MNS

⎤

⎦ = Ĝ′M (12)

where sk = [sk (1), . . . , sk (nA )], Mk ∈ R
3×nA is the moment

of the dipole located at the kth estimated position r̂k , and Ĝ′

contains the lead field matrices of the sources evaluated at the
estimated positions. UML provides an unstructured estimate of
the moment matrix M via

M̂ = (Ĝ′T Ĝ′)−1Ĝ′T X′
A . (13)

While the dipole orientations and moment amplitudes are
not directly revealed in (13), the DML approach described here
illustrates how to determine sk and φk from M̂ in a straight-
forward way. The 3NS × nA matrix M̂ can be partitioned into
NS blocks of dimension 3 × nA that represent estimates of the
moment matrix for each individual source Mk = φksk . Since
the product φksk is rank-one, a straightforward solution to the
problem under the constraint ‖φk‖ = 1 would be to define the
singular value decomposition M̂k = UkΣkVT

k and set

φ̂k = uk,1 (14)

ŝk = σk,1vT
k,1 (15)

where uk,1 and vk,1 are the left and right singular vectors of M̂k

corresponding to the largest singular value σk,1 , respectively.
The DML algorithm for estimating R,φk , and sk for k =

1, . . . , NS , thus, consists of the following two steps:
1) Find estimates of the source locations R̂ using UML with

(11).
2) Solve for φ̂k and ŝk using R̂, (13) and the singular vectors

in (14)–(15).

V. NOISE SUBSPACE FITTING

As an alternative to the DML algorithm described in the pre-
vious section, here we present an approach based on NSF that
achieves ML-like performance while reducing the dimension of
the search by one half. The NSF approach was first introduced
in [25] in the context of direction finding with uniform linear
arrays, and later generalized in [19] to arbitrary diversely polar-
ized antenna arrays, which have an array response model similar
to that for EEG current dipoles. In [25], it was shown that NSF is
a “large sample” realization of ML, with equivalent asymptotic
performance. For the application considered in this paper, the
NSF algorithm estimates the dipole positions and moments as

those that minimize the following cost function:

VNSF(R,Φ) = Tr{A′T (R,Φ)E′
N E′T

N A′(R,Φ)W} (16)

where E′
N is defined in (7). For the asymptotic equivalence with

ML to hold, the NS × NS weighting matrix W = WT > 0
must be chosen as

W = [A′T (R̂i , Φ̂i)E′
S (Λ′

S − σ̂2I)−2Λ′
SE′T

S A′(R̂i , Φ̂i)]−1

(17)
using definitions from (7), where σ̂2 is an estimate of the residual
noise variance in X′

A [for example, σ̂2 = Tr(Λ′
N /(m − NS )],

and R̂i and Φ̂i are initial consistent estimates of the parameters,
obtained for example by application of the algorithm with an
arbitrary positive definite weighting matrix. The fact that NSF
is a multidimensional generalization of MUSIC can be seen
from the fact that, when W = I, the diagonal elements of the
argument of the trace operation in (16) represent the MUSIC
cost function simultaneously evaluated at NS different source
locations.

At first glance, it appears that, like ML, minimizing (16) will
lead to a 6NS -dimensional nonlinear constrained optimization.
However, unlike ML, the form of (16) allows one to decouple
the estimation of the dipole locations R and moments Φ, and
leads to a closed-form solution for Φ. The NSF criterion can,
thus, be concentrated with respect to Φ, which results in a cost
function involving only the 3NS location parameters in R. For
the EEG application, searching only over R is a considerable
advantage not only because of the reduced dimension, but also
because the search can often be confined to certain regions of
interest in the brain where energy is expected to be present.

To illustrate the decoupling mathematically, defining P =
E′

N E′T
N and substituting (4) for A(R,Φ) in (16), we have

VNSF(R,Φ)

= Tr{ΦT
x G′T

x PΦxG′
xW} + Tr{ΦT

x G′T
x PΦyG′

yW}

+ Tr{ΦT
x G′T

x PΦzG′
zW} + Tr{ΦT

y G′T
y PΦxG′

xW}

+ Tr{ΦT
y G′T

y PΦyG′
yW} + Tr{ΦT

y G′T
y PΦzG′

zW}

+ Tr{ΦT
z G′T

z PΦxG′
xW} + Tr{ΦT

z G′T
z PΦyG′

yW}

+ Tr{ΦT
z G′T

z PΦzG′
zW} (18)

where G′
x = PH Gx with its argument having been dropped

for notational simplicity, and similar definitions hold for G′
y

and G′
z . We then use the following result, which holds for any

diagonal matrices Φx ,Φy and for arbitrary matrices X and Y:

Tr(ΦT
x XΦyY) = φT

x (X 	 Y)φy (19)

where 	 represents a Hadamard/Schur (element by element)
product, φx is the vector formed from the diagonal elements of
Φx , and a similar definition holds for φy (and φz ). Using (19),
we can rewrite the NSF cost function as

VNSF(R,φxyz ) = φT
xyzMS (R)φxyz (20)
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where φxyz = [φT
x φT

y φT
z ]T , and MS (R) =

⎡

⎢⎣
(G′T

x PG′
x) 	 W (G′T

x PG′
y ) 	 W (G′T

x PG′
z ) 	 W

(G′T
y PG′

x) 	 W (G′T
y PG′

y ) 	 W (G′T
y PG′

z ) 	 W

(G′T
z PG′

x) 	 W (G′T
z PG′

y ) 	 W (G′T
z PG′

z ) 	 W

⎤

⎥⎦ .

Due to the form of the cost function in (20), in which MS (R)
is only a function of dipole positions R, it is natural to suppose
that minimizing VNSF is equivalent to finding the dipole posi-
tions R that minimize the smallest eigenvalue of MS (R), and
obtaining the dipole orientation parameters from the eigenvec-
tor associated with this minimum eigenvalue. However, this is
not the case because to guarantee identifiability, a constraint on
φxyz is required to prevent the orientation vector for a subset
of the signals from going to zero [19], which can occur even
under the unit norm constraint. Since the orientation compo-
nents can be scaled arbitrarily, one approach is simply to force
Φx = INS ×NS

, for example. This constraint implicitly assumes
that all of the sources of interest have nonzero orientation in the
x-direction. If needed, the algorithm can also be run with simi-
lar constraints for the y- and z-directions to ensure that sources
with moments nearly orthogonal to the x-axis are isolated. As
was discussed in Section II-A, constraining the orientation of
individual dipoles to have unit norm (i.e., ‖φxyz‖ = 1) is an
alternative approach to avoiding trivial solutions. However, this
approach prevents the decoupling of the estimation of Φ and
R, and negates the advantage of the NSF approach (e.g., one
could simply use ML instead if a 6Ns -dimensional search was
required).

Minimizing (20) over R and φyz = [φT
y φT

z ]T with Φx = I,
we have

R̂, φ̂yz = arg min
R,φy z

ψT

⎡

⎢⎣
MS,xx MS,xy MS,xz

MS,yx MS,yy MS,yz

MS,zx MS,zy MS,zz

⎤

⎥⎦ ψ

= arg min
R,φy z

ψT

[
MS,xx MS1

MS3 MS2

]
ψ

= arg min
R,φy z

(eT MS,xxe + eT MS1φyz

+ φT
yzMS3e + φT

yzMS2φyz ) (21)

where e is a vector composed of NS ones, ψ = [eT φT
yz ]

T , and
MS (R) has been partitioned into blocks in an obvious way.
Because the cost function is quadratic in φyz , the estimation of
φyz is separable from that of the dipole positions and can be
found in closed form. Setting ∂VNSF/∂φyz = 0, we have

φ̂yz = −1
2
M−1

S2 (M
T
S1 + MS3)e = Me (22)

where M = − 1
2 M

−1
S2 (M

T
S1 + MS3). Substituting this expres-

sion into (21) leads to a concentrated cost function that depends
only on R:

VNSF(R)=eT (MS,xx +MS1M+MT MS3 +MT MS2M)e.
(23)

The NSF algorithm for estimating R and φyz , thus, consists
of the following two steps:

1) Find the locationsR that minimize the sum of the elements
of

MS,xx + MS1M + MT MS3 + MT MS2M.

2) Solve for φyz using R̂ in (22).
A similar procedure is obtained if one constrains the y- or

z-component of the dipole moments using Φy = I or Φz = I
instead of x.

VI. SIMULATION EXAMPLES

A. Simulation Parameters

As an example, we choose an EEG simulation involving 61
electrodes from the 10-10 system [26]. The LFV’s were calcu-
lated using the approximate method in [8], in which the head
was modeled as a four-layer sphere with its radii and conduc-
tivities specified in [27]. The number of data points used in both
the control and activity states was set to 100 and 25 interfer-
ing sources were simulated at random locations on the surface
of brain with random dipole orientations. Rather than generat-
ing them synthetically, the waveforms used for the interfering
sources were taken from the electrode outputs of real EEG mea-
surements. The moment magnitudes for the sources of interest
were chosen to be similar to the averaged evoked response po-
tentials (ERP) illustrated in [28]. White noise was added to
both control and activity state data, and it was scaled such that
its power matched the desired signal-to-noise ratio (SNR), de-
fined as ‖ASSS ‖2

F /‖WA‖2
F , where AS represents the LFV’s

of the sources of interest, SS = [sS (1), . . . , sS (nA )] contains
the dipole amplitudes of the sources of interest, and WA is
the spatially white background noise present during the activity
states. Each signal of interest was scaled to have unit power and
all interference waveforms were simulated with the same power
specified by the SIR ‖ASSS‖2

F /‖AISI ‖2
F , in which AI is the

LFV’s of the interfering sources and SI contains the dipole
amplitudes of the interfering sources.

B. Results and Discussion

We first compare the performance of MUSIC, LCMV, DML,
and NSF using simulated data with two correlated sources whose
SNR and SIR were 15 and 0 dB, respectively. Figs. 1 and 2 show
the spatial spectra obtained by evaluating the reciprocals of (8)
and (9) at the grid points (we plot the inverse of the cost functions
so that the peaks in the spectrum approximately correspond to
the source locations estimated by MUSIC and LCMV). Dipole
location estimates obtained using NSF (white squares) and the
DML method (magenta diamonds) are plotted on top of the
spectra as well. Black dots show the locations of the interfering
sources. For Fig. 1, two dipoles were located on the surface
of the brain near sensors C5 and C6 to mimic the auditory
experiment described in the next section. Fig. 2 corresponds to
a case with two more closely spaced dipole sources near sensors
C1 and C2. For this figure, the locations of the true sources are
indicated by green triangles and only results for MUSIC are
presented since the performance of LCMV was very similar. In
both cases, the dipole orientation was random and the correlation
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Fig. 1. Spatial spectra and location estimates obtained by the algorithms stud-
ied in this paper. Black dots represent locations of interferers, white squares,
and magenta diamonds represent position estimates obtained by NSF and DML,
respectively. The SIR and SNR were, respectively, 0 and 15 dB and the corre-
lation coefficient was 0.95. NP is used to emphasize that the null projection is
done before source localization.

coefficient was 0.95. Signal cancellation effects due to the high
correlation [3], [29] cause one of the source peaks in the MUSIC
and LCMV spectra to be nearly too faint to be discerned. In the
zoomed-in part of Fig. 2, we also see that the location estimates
provided by MUSIC for both sources is much less accurate than
those from NSF and DML.

To quantify the performance gain of DML and NSF, we con-
ducted a series of Monte Carlo trials in which the two simulated
dipoles were placed in fixed positions on the surface of the brain,
near sensors C5 and C6, with random orientations and various
levels of correlation between the two source signals were tested.
The SNR and SIR were also 15 and 0 dB, respectively. For com-
parison, the ML algorithm (10) was also implemented with a full
6NS -dimensional search. Figs. 3 and 4 show the RMS location
and orientation errors of the algorithms obtained by averaging
over the Monte Carlo trials. As shown in the figures, the per-
formance advantage of NSF, ML, and DML over MUSIC and
LCMV becomes increasingly greater as the correlation of the
signals increases. Note that DML enjoys a slight performance
advantage over NSF for both the location and dipole orientation
estimates. Moreover, the ML algorithm performs similarly to
NSF and DML, but requires significantly more computation.

VII. AUDITORY EXPERIMENTS

Experiments with auditory stimuli were conducted with a
single human subject to elicit auditory-evoked potentials. The
study was approved by the University of California Institutional
Review Board and the subject signed an informed consent form.
The subject received the audio stimulus through a pair of stereo

Fig. 2. Same as previous figure, but sources on the brain surface are more
closely spaced, near sensors C1 and C2. Spatial spectrum is from MUSIC
(LCMV gives similar results), NSF and DML estimates indicated by square and
diamond as before. Green triangles denote the true source locations.

Fig. 3. RMS position estimation errors for MUSIC, LCMV, NSF, DML, and
ML.

(not noise-canceling) headphones and the experiments were
conducted in a standard office environment. The subject was
not blindfolded. EEG signals were measured using two NeXus-
32 (MindMedia, Roermond-Herten, The Netherlands) systems
with linked trigger ports and driven by a synchronization signal
so that they were effectively acting as one system. Each NeXus-
32 system had a built-in low-pass filter with cutoff frequency at
138 Hz. The stimulus consisted of a 1-kHz pure tone presented
to the subject’s left ear. Time intervals with no sound were used
to generate control state data. The experiment was broken down
into 1124 frames, each frame consisting of data recorded with
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Fig. 4. RMS orientation estimation errors for MUSIC, LCMV, NSF, DML,
and ML.

a 512-Hz sampling rate after each possible stimulus event. The
length of each frame was randomly varied between 700–800 ms.
If the frame contained a stimulus, it occurred during the first 100
ms and was followed by silence to allow neural activity to die
down before the next possible stimulus event. The content of
each frame was randomly varied between the stimulus and si-
lence. The outputs of 61 electrodes were recorded, similar to the
setup assumed in the simulations of the previous section. Prior
to application of the algorithms described earlier, the data were
detrended, the first 700 ms of each frame was isolated, and then
all frames of the same type were averaged together to create the
control state and activity state data.

Auditory stimuli presented at one of the ears are conveyed
through auditory pathways until they reach the brain. At the
beginning, the inputs cross to the opposite side in the hindbrain
and then there is a recrossing of information so that informa-
tion from the ear reaches both hemispheres [30], [31]. Due to
the mechanism described earlier, we might expect a correlated
source scenario when the tone is applied to one of the ears
of the subject. Furthermore, for auditory-evoked potentials, the
P50 and N100 waves are the most relevant to our experiments.
They have latencies of about 50 and 100 ms from stimulus onset
and are reported to have a strong contribution from the primary
auditory cortex [2], [11]. An SVD of the control state data ma-
trix with size (61 × 358) revealed that about 99% of its energy
was confined to a rank-18 subspace, and thus, the number of
interferers was set to 18. The number of sources-of-interest was
set to 2. For the activity state data, only samples between 25
to 158 ms (69 samples) after application of the stimulus were
used for localization, in order to isolate the P50 and N100 ERP
peaks. Before applying the algorithms, the NP technique was
applied to the activity-state data for interference suppression.

Fig. 5 shows the spatial spectra generated by MUSIC and
LCMV. Dipole location estimates obtained using NSF (white
squares) and the DML method (magenta diamonds) are plotted

Fig. 5. Spatial spectra and location estimates obtained by discussed algorithms
using experimental activity data. The white squares and magenta diamonds
represent the position estimates obtained by NSF and UML, respectively.

as well. NSF and DML provide location estimates that are con-
sistent with sources located on the auditory cortex. On the other
hand, the energy in the MUSIC and LCMV spectra is signifi-
cantly smeared, and the source on the right side is very weak and
the corresponding estimate is not well defined (this is similar
to what is observed in Fig. 1). The correlation coefficient ρs1 ,s2

between the two estimated sources was calculated using

ρs1 ,s2 =
1

nA − 1

nA∑

i=1

(
s1(i) − s1

σs1

) (
s2(i) − s2

σs2

)

where si and σsi
are the mean and standard deviation of si . The

correlation coefficients between the two sources identified by
NSF and DML are 0.8820 and 0.8989, respectively, indicating
that indeed this corresponds to a situation with high correlation.

VIII. CONCLUSION

We have presented two efficient algorithms for handling
EEG source localization problems involving highly correlated
signals, which can lead to difficulties when standard high-
resolution approaches such as MUSIC or LCMV are applied.
The two algorithms, referred to as DML and NSF, require a
less complex optimization than standard ML, but both will have
asymptotically the same performance as ML. The estimation
accuracy of DML and NSF was verified through simulations
that showed its increasing advantage over MUSIC and LCMV
with increasing signal correlation. A real-data experiment with
auditory stimuli applied to both ears of a human subject was
conducted to create a scenario with highly correlated activity
data. The results indicate that DML and NSF provide results
consistent with that expected in this case, with location esti-
mates concentrated near the auditory cortex.
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