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A Control Algorithm for Autonomous Optimization
of Extracellular Recordings

Zoran Nenadic*, Member, IEEE, and Joel W. Burdick

Abstract—This paper develops a control algorithm that can
autonomously position an electrode so as to find and then main-
tain an optimal extracellular recording position. The algorithm
was developed and tested in a two-neuron computational model
representative of the cells found in cerebral cortex. The algo-
rithm is based on a stochastic optimization of a suitably defined
signal quality metric and is shown capable of finding the optimal
recording position along representative sampling directions, as
well as maintaining the optimal signal quality in the face of
modeled tissue movements. The application of the algorithm to
acute neurophysiological recording experiments and its potential
implications to chronic recording electrode arrays are discussed.

Index Terms—Optimization of recordings, autonomous
electrode control, unsupervised signal processing, stochastic
optimization.

I. INTRODUCTION

RECORDING the spiking activity of a single neuron or
a population of neurons has become a primary method

for understanding the physiological function of the brain. This
paper focuses on extracellular recordings which are predomi-
nantly used in experiments with behaving animals. We present
an algorithm that can autonomously position an extracellular
recording electrode, so as to first optimize, and then maintain
the quality of its signal. The algorithm can be potentially useful
for both acute and chronic extracellular recordings. This paper
focuses mainly on the theoretical aspects and the development
of the algorithm in a simulated environment. The successful im-
plementation of our algorithm in a multitude of acute recording
experiments has been reported in [1].

A main motivation for the development of this algorithm
stems from the tediousness and complexity of acute recording
experiments, where electrodes are introduced in neural tissue
for a period of several hours. During these experiments, op-
erators advance high-impedance electrodes into neural tissue
and manually position them with micron accuracy with the
ultimate goal of a single unit isolation. A satisfactory isolation
is usually achieved by placing the electrode in a close proximity
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of the target cell, which in turn makes its activity dominant
with respect to the activity of other cells and background noise.
In the simplest acute recording scenario the operator advances
a single microelectrode to a target depth, where neural sig-
nals are sampled and intuitively monitored by oscilloscopes
and/or speakers. These devices help the experimenter assess
the quality of observed data. Typically these signals contain no
distinct neural activity, in which case the electrode is lowered
further, often in somewhat larger increments, and the above
procedure is repeated. As the electrode approaches active cells,
distinct action potentials (spikes) emerge from the background
noise. Very often these emerging spikes originate from multiple
cells, making the process of cell isolation more challenging.
The amplitude of these spikes is very sensitive to the distance
between the active cell and the tip of the recording electrode
(both theoretical [2] and experimental [3] studies point to an
exponential type of dependency), therefore, once the spikes
are detected, the operator proceeds cautiously (with a smaller
step size). From this point on, the electrode guidance depends
largely on the operators’ intuition and their (subjective) assess-
ment of the quality of recorded signals. Once the isolation is
attained, frequent readjustments of the electrode’s position are
often necessary to actively maintain a high quality signal in
the face of inherent tissue drift and relaxation. As the number
of recording electrodes increases, the traditional paradigm of
manual electrode positioning and frequent readjustments be-
comes tedious at best, and perhaps unworkable for experiments
that use large electrode arrays [4]. An automated procedure to
isolate cells, and then maintain the recording quality on a large
numbers of electrodes, would lead to improved experimental
productivity and higher quality data. These observations serve
as a main motivation for the development of the algorithm
which will be briefly described next.

To achieve single unit isolation and maintenance, an au-
tonomous control system must replicate the essential steps
performed by a human operator. First, such a system would
need to recognize whether the recorded signal contains any
distinct spikes or not. Clearly, such a recognition has to be
performed in a completely unsupervised fashion, as opposed
to current practice. If spikes are not found, the algorithm must
advance the electrode with appropriate sampling step until
the spikes are found. Once spikes are detected, the quality
of observed signals needs to be estimated. Unlike the human
operator, who often relies on a subjective estimate of the signal
quality, we define a suitable signal quality metric and proceed
by maximizing such a metric. Apart from spike detection,
estimating such a metric from noisy data includes several addi-
tional steps, of which spike classification is the most important
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Fig. 1. FSM diagram of the algorithm.

one. Whereas humans simply look at an oscilloscope trace
to establish the presence of multiple cells, the task is more
challenging when performed by a computer in an unsupervised
manner. Not only must the spikes be correctly classified, but
also the number of distinct spike classes must be determined
from the data. As the electrode moves through the tissue,
spikes from new cells may appear and the signals from existing
neurons may disappear, making the number of classes variable.
Upon convergence, the electrode position should be (locally)
optimal with respect to the chosen signal quality metric. Once
the optimal position is found, the signal quality must be moni-
tored, so that if it degrades significantly, the electrode position
can be updated to re-optimize the signal.

Since the dynamics of the above system is driven by abrupt
occurrence of physical events, the system is appropriately mod-
eled as a discrete event system [5] with a finite state machine
(FSM) (see Fig. 1). The states are represented by boxes and the
state transitions are denoted by arrows. In each state, the algo-
rithm samples observed signals for a short period of time and
performs an analysis of the data (e.g., spike detection, classi-
fication, and signal quality calculation). Based on the outcome
of the signal analysis, the algorithm commands the electrode’s
movement and a state transition is executed. In the Search state
the electrode is moved with a constant step , chosen by the
user before the experiment initiates. In the Optimize state the
electrode is moved according to a recursive stochastic optimiza-
tion, that is developed in Section IV. In the Maintain state the
electrode is not moved. The algorithm remains in the Search
state (by means of self-transitions) until the spikes are detected,
which triggers the transition to the Optimize state. The algorithm
remains in the Optimize state until acceptable signal quality is
attained (i.e., until the maximum of the signal quality metric is
found), at which point the algorithm transitions to the Maintain
state. At this state, the algorithm checks for the signal quality
variations without the electrode movement. If these variations
exceed some prespecified tolerance, the optimality is considered
lost, and the algorithm transitions back to the Optimize state.

In the remainder of the paper, we present the details of the al-
gorithm just described. Section II summarizes a computational
model for the extracellular field around an active neuron, which
serves as a front end for our control algorithm. In Section III,
we introduce a set of unsupervised signal processing tools
necessary for the autonomous operation of the algorithm. In
Section IV, we formulate the problem of optimal electrode
positioning as a maximization of a regression function. We
quantify the algorithm’s performance in a simulated environ-
ment in Section V, followed by a discussion in Section VI.
Finally, the concluding remarks are given in Section VII and
some mathematical details are given in the Appendix.

Fig. 2. (A) Two-dimensional projection of the pyramidal cell model. The rec-
tangle in the lower left represents a 200� 200 �m boundary around the soma
(visible as black dot in the center). (B) Intracellular voltage trace at the soma
showing three action potentials.

II. MODELING EXTRACELLULAR POTENTIAL

The algorithm was initially developed and validated in a sim-
ulated environment. The purpose of the computational model
is to simulate the recording electrode positioning processes in a
repeatable and reliable way. Additionally, this model provides
a biophysical basis for our control methodology. The simulator
consists of two components. In the first part we solve for the
time-varying membrane currents using a detailed compart-
mental model of a neuron. In the second part these currents
are used as boundary conditions for a partial differential equa-
tion (PDE) that models the propagation of the extra-cellular
potential.

A. Computational Model of a Single Neuron

A model of a neocortical pyramidal cell from layer 5 of the
cat visual cortex was used for simulations [6]. This model was
selected mainly because of its ability to emulate firing proper-
ties of real cortical cells. We emphasize that nothing about our
control algorithm depends upon the specific properties of this
model. A brief account of the model is given here for the con-
venience (see [6] for details).

The model consists of 3720 compartments, thus capturing
the complex cell geometry (Fig. 2), and was developed with
the NEURON simulator [7]. The model has low- (high-) den-
sity sodium Na channels in the soma and dendrites (the axon
hillock and initial segment), respectively. Fast potassium K
channels are present in the axon and soma, but are excluded
from the dendrites. This type of channel distribution is respon-
sible for spike initiation at the axon initial segment [8]. To en-
sure repetitive firing, slow K channels were added to the soma
and dendrites, along with one type of high-threshold calcium
Ca channel. Based on a modification by Holt [9], the neuron
was activated by synapses uniformly distributed throughout the
dendrites.

Generally, the propagation of electric potentials through con-
ductive neural media gives rise to complex PDEs. Depending on
the number of assumptions made in the modeling process, these
equations can be substantially simplified. Only final results will
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be presented here. For a detailed derivation of the results from
the first principles and underlying assumptions, we refer to [10].
In summary, the electric potential in the space in and around the
neuron is governed by a system of Laplace1 equations

(1)

with the boundary conditions and
, where and are the intracellular and extracellular po-

tential (respectively), and are the corresponding conduc-
tivities per unit length, and are normal vectors to the cell
membrane , and is the transmembrane current
per unit area. For a neuron with complex dendritic structure,
the system (1) is virtually unsolvable. Most neural simulators
assume one-dimensional (1-D) intracellular space and a weak
coupling from extracellular to intracellular potential (effectively

). Under these conditions, the -part of the system (1)
can be viewed as a 1-D PDE driven by the dynamics of the active
membrane. This PDE is then solved numerically by converting
it to a system of ordinary differential equations through a com-
partmental modeling process. A train of intracellular action po-
tentials at the soma compartment of the model cell is shown in
Fig. 2. Once and are known for each compartment, it is
possible to solve for , although the solution is not straightfor-
ward as we shall see next.

B. Extracellular Potential Simulator

Despite existing numerical routines for solving PDEs, the
complexity of the boundary condition renders the solution of
the -part of (1) prohibitively expensive. An approximation has
been developed that gives a fast and relatively accurate solution
[9]. Assuming current is generated at a point source in an un-
bounded isotropic volume, we have

(2)

where is the source current and is the distance to the
source. If we neglect the thickness of the compartmental model
segments, each segment can be treated as a continuous line of
point sources. For a single line segment, the potential at a point

due to this line source approximation is

(3)

where is the transmembrane current per unit length, is the
distance to the line, measures distance in the direction of the
line underlying the segment, and and 0 are the endpoints
of the line segment in a local coordinate system attached to the
segment (see Fig. 3). Note that this approximation implies a ra-
dial symmetry of the extracellular potential . Moreover, for
a fixed time , the transmembrane current is constant along the
segment and the solution to (3) can be found

1The time constants for the extracellular and intracellular space are much
smaller than those of an active membrane [10]. Hence, both the extracellular
and intracellular space are almost purely resistive and no time derivatives ap-
pear in (1).

Fig. 3. Geometry of the line source approximation for a single segment with
length s . The evaluation point is located at (r; z).

Fig. 4. Spatio-temporal variations of the extracellular potential in a horizontal
plane confined to rectangular region shown in Fig. 2 and passing through the
soma. Each trace represents a 2 ms interval of calculated potential at a point
located in the center of the trace. The colored bars to the right are indicating
the scales for different traces. The peak potential (yellow trace) occurs next to
the axon hillock/initial segment. The circle corresponds to a 120-�m-diameter
sphere centered at the axon hillock. For typical recording noise levels, the spikes
outside the sphere would not be detectable.

in a closed form. The exact form of this solution and the accu-
racy of the line source approximation for this particular model
are discussed in [10]. At a fixed time, the potential at any point
in the extracellular space is found by summing the contributions
of all the line segments (3) and the soma (2).

The spatio-temporal variations of the simulated extracellular
potential in a horizontal plane, passing through the soma of the
model cell undergoing an action potential, are shown in Fig. 4.
Note the variability in the shape of spikes at different spatial lo-
cations. Also, note that the amplitude of individual spikes drops
exponentially with the distance from the point of the largest po-
tential (axon hillock/initial segment for this model). We will
see later that our electrode control methodology is facilitated
by these large amplitude gradients. Consistent with both empir-
ical [11] and theoretical [2] studies for small cortical neurons
(soma diameter 10–30 m), the average value of the peak-to-
peak signal amplitude 60 m away from the axon hillock is
less than 100 V (see Fig. 4). For many recording systems this
is close to the level of noise imposed by various factors (see
below), which makes these signals indiscernible from the noise.
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C. Modeling Noise Field

It is necessary to add noise to the model in order to mimic ex-
perimental conditions. The major sources of noise in recording
experiments are: the thermal noise in the recording electrode,
the ambient noise of the recording hardware, the quantization
noise due to analog-to-digital (A/D) conversion, and the biolog-
ical noise [11], i.e., the spikes of neurons relatively distant to
the recording site.

In the simplest scenario, the observed signal can be viewed
as a useful deterministic signal, , corrupted by an additive noise

, i.e., , where subsumes various noise
sources from above. To model noise properly, we make the
following observations. First, neural noise is nonstationary, i.e.,
its statistical properties are changing over time. The nonstation-
arity of neural noise has been reported on time scales as small
as 20 ms [12]. Secondly, the distribution of neural noise is non-
Gaussian. Several studies [12]–[14] report super-Gaussian den-
sity of neural noise. Furthermore, like many processes arising
in physical applications, neural noise belongs to the category of

processes [15], with a spectrum2

over a wide range of frequencies. Since these processes are
not realizable with linear models, other modeling attempts have
been made in the past [16]–[18], although no general solution
exists to date.

To avoid these problems and to take advantage of recorded
data3 at our disposal, we sampled neural noise from the
Rhesus parietal cortex recordings that did not yield any visible
spikes [Fig. 5(A)]. This noise, which we refer to as recorded
noise, contains all the noise sources listed above and has a
characteristic spectrum [Fig. 5(B)]. The nonstationarity
of the noise is shown as follows: some 100 s of recorded
noise were broken into 50-ms nonoverlapping subsegments,
and the subsegments were whitened using the eigenvectors of
their common covariance matrix. Note that the stationarity is
invariant under linear transformations, allowing us to test the
whitened subsegments. Given two whitened subsegments, the
null hypothesis that they obey the same distribution was tested
using a 2-sample Kolmogorov–Smirnov (KS) test. Many of
the subsegment pairs failed the test at significance level 0.05,
some with a p-value as small as . Likewise, since the
Gaussian property is invariant under linear transformations, we
can test the noise for Gaussian distribution using the whitened
subsegments. In particular, many of the subsegments failed a
KS test for normality at significance level 0.05, some with a
p-value as small as . The histogram of one such noise
subsegment is shown in Fig. 5(C).

These properties, together with the abundant number of
sample paths that can be drawn from recorded data (over 15
min of recording), make the recorded noise a suitable noise

2We ignore for the moment an apparent paradox of the spectra of nonsta-
tionary processes.

3A single platinum-iridium microelectrode (Frederic Haer Company, Bow-
doinham, ME) with the nominal impedance of 2 M
 at 1 kHz was used for the
recording. The electrode was advanced manually using a commercial microma-
nipulator (Narishige International USA, Inc., Long Island, NY). The data was
acquired through a recording system (Plexon Inc, Dallas, TX) with a preampli-
fier and a bandpass filter (band 154 Hz–13 kHz). The signals were amplified and
digitized (12-bit A/D converter, digitization rate 40 kHz) by a data acquisition
card PCI-MIO 16E-4 with LabView (National Instruments, Austin, TX).

Fig. 5. (A) Recorded data containing no visible spikes—recorded noise.
Dashed lines mark the 4� bounds. (B) The power spectral density of the noise
with the characteristic 1=f shape. (C) Normalized histogram of the whitened
noise samples together with a Gaussian probability density function whose
mean and variance are equal to the sample mean and sample variance. Note the
discrepancy between the histogram and the Gaussian density, consistent with
the KS test.

candidate for our computational model. Therefore, for each
subsegment of simulated data, a subsegment of the recorded
noise was selected at random, scaled to a standard deviation

V, and added to the simulated data. Note that this
level of noise is consistent with typical noise levels in extracel-
lular recordings [19], [20].

Although the neural noise was modeled as a nonstationary,
non-Gaussian process, we will assume exactly the opposite for
the purpose of algorithm development. The stationarity assump-
tion allows us to by-pass the cumbersome treatment associated
with nonstationary processes, while the Gaussian assumption
often leads to closed form solutions. The downside is that the
violation of these assumptions generally produces suboptimal
solutions. We shall see in Section V-D that the algorithm is ro-
bust with respect to the violation of these assumptions. The suc-
cess of our algorithm in experimental environment [1], where
these assumptions are likely to be violated, points to a similar
conclusion.

The level of noise in the system is measured by a signal-to-
noise ratio (SNR), defined here as the energy of a spike signal
divided by the expected noise energy. For a zero-mean wide
sense stationary noise with a variance , this definition reduces
to

(4)

where is the root-mean-square value of , calculated
over the supporting time interval of a single spike (1.6 ms in the
present study).
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III. UNSUPERVISED SIGNAL PROCESSING

As discussed in Section I, the core of our algorithm is based
on optimization of the quality of recorded signals, which is mea-
sured by defining an appropriate signal quality metric. In order
to obtain such a metric, the electrode signal (simulated signal
in our study) must be processed accordingly. First, the signal
needs to be tested for the presence of spikes. This is achieved
through spike detection. Once the spikes are detected, we need
to assess whether the detected spikes originate from a single
neuron or multiple neurons. If spikes from multiple units are
present, they need to be classified properly. This is achieved by
means of spike classification, typically preceded by alignment
and feature extraction, which serve as preprocessing steps (see
Fig. 6). Although these processing steps have been tradition-
ally used in neuroscience, we emphasize the fact that for a fully
autonomous function of the control algorithm, all signal pro-
cessing steps have to be unsupervised. Furthermore, a moving
electrode will to encounter a range of spike shapes and ampli-
tudes (SNRs), even from a single neuron (see Fig. 4); thus, the
signal processing must be adaptive and robust to these varia-
tions. Next, we describe a set of algorithms that carry out the key
spike processing steps in a robust and unsupervised fashion that
is necessary for our application. Some of these algorithms are
novel, while some are variations of known techniques to make
them suitable for our needs.

A. Spike Detection

Because of its practical importance to experimental neuro-
science, the detection of spikes in noisy extracellular data is a
classical problem. Unfortunately, most of the existing spike de-
tection methods, such as window discriminator [22], principal
components [23], or matched filtering [24], are supervised and,
therefore, not suitable for autonomous probe operation. Other
methods, such as amplitude detection [13] and power detection
[24], can be implemented in an unsupervised manner, although
with large variations in SNRs and firing rates, typically found
in movable electrode operations, these methods are fraught with
inconsistent performance [21].

Combining the theory of wavelets, statistics and detection
theory, we have recently developed a robust unsupervised spike
detection algorithm. The theory behind the algorithm is not the
subject of this paper, and a detailed discussion on this topic can
be found in [21]. This approach can be used for unsupervised
spike detection over a wide range of SNRs and firing rates. Fig. 6
shows a simulated neural activity of two cells and the spikes de-
tected by our wavelet method. Throughout the rest of the paper
the spike detection will be assumed to be the wavelet-based
technique of [21].

B. Spike Alignment

After detection, alignment of spikes is used to overcome the
effects of jitter arising from background noise and finite sam-
pling of the signal. Many classical approaches to spike align-
ment problem, such as alignment by the peak [25], or alignment
by the “center of mass” [13], are not amenable to unsupervised
applications, therefore, the correlation method of [23] was mod-
ified and used for unsupervised alignment. Briefly, the spikes
were ordered by their amplitude, and the first spike was fixed.

Fig. 6. (A) One second of simulated activity of two cells (sampling track V-6,
see Section V-B). (B) Spikes detected by the wavelet detection method [21].
The 1.6 ms traces are centered at the estimated spike arrival times. Note the jitter
in the estimated arrival times, especially for low-amplitude spikes. (C) Spikes
aligned using our correlation method. (D) Spike features (N = 2) extracted
as the two Haar wavelet coefficients with the largest magnitude. Each dot is a
spike from the previous panel. (E) Two clusters (dark and light gray) identified
using a Gaussian mixture model. There were no outliers in this case. (F) Class
memberships in time domain.

A short (1.6-ms) segment in the neighborhood of the second ar-
rival time was found that maximized the absolute value of the
correlation with the first spike. This segment was taken as the
second spike. A short segment in the neighborhood of the third
arrival time was found that maximized the absolute value of the
correlation with the first and the second spike. This segment was
then declared the third spike, and the procedure was repeated in
this fashion until all the spikes were aligned. Fig. 6(C) shows
the spikes after alignment using our correlation method. Note
that spike alignment effectively re-estimates the arrival times of
detected spikes.

C. Spike Classification

To determine the sources of individual spikes in data con-
taining multiunit activity, we use cluster analysis. Apart from
their heuristic nature, the most widely used clustering methods,
such as hierarchical [26] and k-means methods [27], do not pro-
vide the information regarding the number of clusters in the
data, which makes them ill-suited for unsupervised applications.
Alternatively, cluster analysis can be formulated within a prob-
abilistic framework of finite mixture models [28], in which case
the choice of the number of clusters reduces to a model se-
lection problem. Additionally, finite mixture models efficiently
handle outliers. The basic steps of our finite mixture model ap-
proach, which follows closely that of [29] and [30], are sum-
marized below. A more detailed description is provided in the
Appendix I.

To reduce the number of parameters necessary to describe the
model, the first step extracts a low-dimensional feature set from
the spike data. This process is referred to as feature extraction,
and an example of 2-D spike features extracted using the Haar
wavelet transform are shown in Fig. 6(D). In the next step it is
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assumed that these features are sampled from some unknown
probability density function (PDF), modeled as a linear mixture
of a fixed number of component PDFs. The number of com-
ponents equals the number of clusters, and neither the number
of components, nor the parameters of the component PDFs are
known. If we fix the number of components, the remaining un-
known parameters can be found through the expectation-maxi-
mization (EM) algorithm [31], after which the component PDFs
are fully specified. In a model selection step, we define a family
of mixture models by varying the number of components, and
for each member of the family we perform the model identi-
fication using the EM algorithm. Finally, a model is selected
that maximizes the Bayesian information criterion (BIC) [32].
For the observations of Fig. 6(D), a 2-component model had
the largest BIC, among a family of five different models. At
each observation, the component PDFs are then evaluated and
an observation is assigned to the component (cluster) with the
highest PDF. The results of this clustering assignment are shown
in Fig. 6(E).

D. Signal Quality Metric

The choice of a signal quality metric is not unique and may be
application dependent. Perhaps the simplest spike feature that is
representative of the signal quality is given by its peak-to-peak
amplitude (PTPA), which was used throughout this paper. The
pros and cons of this particular metric choice are discussed in
Section VI.

In general, the presence of multiunit activity in the data has
to be accounted for in the definition of signal quality metric, for
otherwise the metric will be averaged over different cells, and
will underestimate the signal quality of the target cell. This, in
turn may confound the algorithm to spurious maxima, which
could be far from optimum. Therefore, the PTPA is first eval-
uated over individual clusters, and the cluster which provides
the largest average value of the PTPA is determined. We refer to
this cluster as the dominant cluster. The PTPA of a spike from
the dominant cluster defines a single observation of the signal
quality metric. Generally, the dominant cluster will contain mul-
tiple spikes, thus providing multiple observations of the signal
quality metric, which is important for stochastic optimization
scheme discussed in Section IV.

IV. RECURSIVE STOCHASTIC OPTIMIZATION

We now formulate the electrode positioning problem within
a framework of a recursive stochastic optimization, which is the
key component of the Optimize state as discussed in Section I.

Let and denote the position of the electrode and the
associated signal quality metric along a linear track with an ar-
bitrary origin, respectively. Because of the noise in neural sig-
nals, the metric is a random variable with an associated re-
gression function , where denotes the
conditional expectation operator. Generally, the function
is nonlinear. Moreover, it often exhibits unimodal character as
suggested by experimental data in Fig. 7. Next, we will out-
line an algorithm that maximizes the regression function of the
signal quality metric given the position of the electrode . The
regression function itself is unknown; all we have are the noisy

Fig. 7. (A) PTPA curve of a neuron from the parietal reach region of monkey
posterior parietal cortex (see Section II-C for recording details). The data was
obtained by sampling along a straight line in 10-�m increments and recording
for approximately 10 s at each location. The curve was constructed by averaging
PTPA over the spikes detected at each location. The number of spikes per loca-
tion varied from 213 to 478. In the large number of spikes limit, this function
converges (pointwise) to the regression function of the PTPA given the position
of the electrode. (B) Ensemble average � standard deviation of spikes at loca-
tions marked by dotted lines.

observations of the signal quality metric, sampled from the dom-
inant cluster.

The problem of a regression function maximization from
noisy observations has been traditionally solved through a
recursive stochastic optimization. In their pioneering work
[33], Kiefer and Wolfowitz devised a stochastic version of the
gradient ascent method, also known as the Kiefer–Wolfowitz
(KW) scheme. Under relatively mild regularity conditions on

and for appropriate choice of the recursion parameters,
the KW scheme is provably convergent [33], [34]. Unfortu-
nately, in the movable probe context, the KW scheme has very
limited applicability. For example, since the method relies on a
finite difference estimate of the regression function derivative,
excursions of the electrode at each position are required to
gather the necessary data. Moreover, as the iteration progresses,
the variance of the estimated derivative becomes larger, which
renders the convergence rather slow and leads to excessive
electrode dithering. In practical applications, the unnecessary
back-and-forth electrode movement inevitably leads to ex-
cessive tissue damage and possible inflammatory reactions.
Next, we propose an alternative that adequately handles these
problems.

At the core of the KW scheme is a calculation of the deriva-
tive through a finite difference method. In general, taking a dif-
ference of noisy data amplifies the effect of noise, which is the
main reason for the nonsmoothness of difference based tech-
niques. Therefore, it might be worthwhile to estimate the re-
gression function itself, rather than its derivative. In the sequel,
we propose a model-based approach, where the regression func-
tion estimation reduces to the problem of parameter estimation.
Allied to a recursive scheme similar to the KW scheme, this
provides an efficient way of estimating an optimal electrode po-
sition, . The major benefit of this approach is that multiple
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observations of the signal quality metric at each position, , ef-
fectively smooth out the estimate of the regression function, so
that excessive dithering of the sequence is elimi-
nated. Also, if a differentiable model for the regression function
is chosen, the derivatives of the regression function can be found
analytically, thus eliminating the need for the electrode excur-
sions, as required by the KW scheme.

We will explain briefly the idea behind our model-based
approach here. A more detailed description and mathematical
derivations can be found in Appendix II. The regression func-
tion model is assumed to be a linear combination of a certain
number of basis functions chosen by the user. The model
parameters and the number of basis functions (complexity)
of the model are unknown and have to be estimated from the
data. The model estimation procedure is adaptive in the sense
that both the parameters and the complexity of the model
will change throughout the algorithm’s iterations as new data
become available. Once the model (at iteration ) is known, the
following recursive scheme is derived (see Appendix II):

(5)

where is an appropriately chosen scale factor, and
and are the estimates of the first and second derivative of
the regression function at point , respectively. Note that (5)
represents a stochastic version of Newton’s method with supe-
rior convergence properties than the stochastic gradient ascent
method [35]. The convergence is considered attained at iteration

if , where Tol is a tolerance chosen by
the user. The position is then declared a solution, and the
algorithm transitions to the Maintain state (see Section I).

V. RESULTS

The performance of the autonomously movable electrode al-
gorithm was tested in a simulated environment. To properly test
all the operations of our algorithm in a multiunit context, we
simulated the extracellular potential of two neurons.

A. Simulations

Two identical cell models are placed in parallel [see
Fig. 8(A)] to mimic the parallel organization of the cells in
cortical columns. In a local coordinate system, the somata
of cell 1 and cell 2 are centered at (0, 0, 0) m and (50 0 0)

m, respectively. Rotation of the cells around y-axis did not
significantly affect the results. The 50 m distance between
the somata is consistent with the wide range of cell densities
in the cerebral cortex [36]. To account for complex nonlinear-
ities in the kinetics of voltage-gated channels, the simulations
were carried out with variable step size in NEURON, ranging
between 0.02 ms and 1.0 ms [10]. The firing rate of each cell
was 58 Hz.

While our extracellular simulator can work at an arbitrary
sampling rate, we found a rate of 20 kHz a good compromise
between computational speed and accuracy of spike represen-
tation. Thus, the transmembrane currents were re-sampled at
20 kHz in MATLAB® using linear interpolation. The choice of
re-sampling method did not cause any significant differences in

Fig. 8. (A) Two dimensional projection of two cells in the space. (B) A close-up
of the two somata (cell 1 light gray and cell 2 dark gray) showing 12 ver-
tical sampling tracks. Dendrites are left out for clarity. (C) Equivalent plot for
horizontal sampling tracks. (D) Recording from the bank of the sulcus where
the recording track is perpendicular to the apical dendrite. Local coordinate
system is shown to the left. (E) Recording from a regular cortical layer where
the recording track is parallel to the apical dendrite.

the results. The membrane currents of the second cell were de-
layed by 8 ms to prevent the cells from firing simultaneously.4
For each sampling position, the cells’ locations were evaluated
based on the model in Appendix III, and the extracellular poten-
tial due to the two cells was calculated as a superposition of the
potentials of individual cells, which were obtained as described
in Section II-B. Due to relatively high firing rates, 1 s of data,
simulated at each electrode position, provided enough spikes for
successful postprocessing (e.g., clustering and objective func-
tion evaluation). A 1-s-long subsegment of the recorded noise,
seen in Fig. 5, was selected at random, re-sampled at 20 kHz,
scaled to V, and added to the simulated data at each
electrode position.

B. Definition of Sampling Tracks

The performance of our algorithm was tested along many
transects, including the two principal directions seen in Fig.
8(B) and (C). These two sampling directions mimic the process
of recording from a sulcus and regular cortical layers, as shown
in Fig. 8(D) and (E). We simulated several individual sampling
tracks along each of these two principal directions. These tracks
are numbered, with the prefix V or H used to distinguish be-
tween the vertical and horizontal tracks. The tracks of the ver-
tical and horizontal directions start in a plane located at
and , respectively.

To obtain statistically significant results, 100 trials were
performed for each sampling track, with the admissible range
of electrode movement of for V-tracks and

for H-tracks. These values are in agreement with
a relatively small field of the detectable potentials of the model
cell (see Fig. 4). They also reduce the time the algorithm spends
in the Search state, thereby lowering the computational over-
head of individual trials. If the algorithm did not converge to a
solution within these ranges, the trials were aborted and declared

4For demonstration purposes we ignore the problem of spikes which are over-
lapping in time.
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TABLE I
CHOICE OF PARAMETERS AND METHODS USED FOR PRESENT ANALYSIS

unsuccessful. Depending on their position relative to the cells,
the SNRs of individual V-tracks were in the range of ,
and in the range for H-tracks. The SNR was calculated as

(6)

which is a modification of the previous definition to account for
the presence of two neurons. Because both cells have the same
firing rates, the two RMS values are weighted equally [21].

C. Choice of Parameters

The choice of algorithm parameters and spike processing
methods used in the analysis that follows, is given by Table I.
Generally, the performance of the algorithm depends on chosen
parameters and methods, and analyzing the performance over
a range of parameters and methods is not the subject of this
paper. However, we have found that as long as model selection
parameters , and are chosen reasonably, the algorithm
offers consistent performance.

D. Performance of the Algorithm

Since the electrode and the cells are movable, an efficient
way to test the performance of the algorithm is to measure how
close the electrode comes to the dominant (closest) cell upon
convergence (at iteration ) and compare this distance, denoted
by , to an exact optimum, , across trials.

The exact optimum was calculated off-line through a brute
force numerical search (described below) over the sampling
tracks, using very fine (1 m) sampling steps. To eliminate the
dependence of the exact optimum on the electrode movement,
the cell coordinates were kept fixed in the search process. At
each sampling location, a 1-s data segment was simulated and
the spikes corresponding to the dominant cell were used to
obtain the samples of the signal quality metric. Since the precise
occurrence times of the spikes from the two cells were exactly
known, no detection, alignment or clustering was performed.
This eliminated the error due to false detection, misclassifica-
tion, etc., and ensured that the exact optimum evaluation was
error-free. The regression function was estimated as the
sample average of the signal quality metric and its maximizer

Fig. 9. Histogram (bin size 8 �m) of error " d �d over different vertical
tracks. The data is only shown for successful trials, e.g., the histogram of V11
normalizes to 84%. The bin center " = 0 is located next to the dot representing
the sampling track. The dendrites of cell 1 and cell 2 are in light and dark gray,
respectively. The two axon hillocks are shown as meshed cones adjacent to the
somata.

Fig. 10. Equivalent plot for horizontal tracks. The axon hillocks are shown as
two annular regions in the center of the somata.

was found. At the point , the exact optimum was found
as the distance between the electrode tip and the soma center
of the dominant cell.

1) Convergence: The convergence properties of our algo-
rithm are quantified by the distribution of error ,
calculated over 100 trials (see Figs. 9 and 10). For V-tracks
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(H-tracks), the estimated solutions were within 10 m of the
exact optimum in 96% (90%) of the trials, and the algorithm
failed to converge in less than 2% (9%) of the trials, respectively.
The success rate of a track, defined as a percentage of conver-
gent trials, was dependent on the maximal SNR attained over
the track. The tracks with the smallest SNR were the ones that
did not yield 100% success rates, namely: V11 ( ,
success rate 84%), V12 ( , success rate 97%), H5
( , success rate 54%), and H6 ( , suc-
cess rate 92%). Likewise, the lowest SNRs yielding 100% suc-
cess rates were: 2.01 (V9), 2.04 (V8), 2.02 (H3), and 2.04 (H2).
These results suggests that there is a critical value of SNR
that separates fully successful from partially successful sam-
pling tracks. Additional analysis of partially successful tracks
revealed regression functions that were hardly peaked. Coupled
with a low SNR, this occasionally confounded the estimated
model to a flat line and prevented convergence. Furthermore, the
errors in spike detection, alignment and clustering were more
frequent under low SNRs, thereby increasing the likelihood of
failure in these trials. Finally, the average convergence rates (de-
fined here as the number of iterations in the Optimize state),
of these sampling tracks were lower than those of the fully
successful sampling tracks (16 versus 13 for V-tracks and 20
versus 15.5 for H-tracks). Similar convergence rates (10–20 it-
erations) have been reported in experimental applications of our
algorithm [1].

2) Cell Isolation: The analysis of convergent trials revealed
that the algorithm always isolated the correct target neuron:
cell 1 for tracks V3–V5, V9–V11, and H3–H5, and cell 2 oth-
erwise. Among other factors, the isolation of a correct target
neuron depends critically on correctly performed signal pro-
cessing steps, especially spike alignment and classification. An-
other very important factor for correct isolation is the position
of the sampling track with respect to the nearby cells. For ex-
ample, probing the algorithm along a track C that lies exactly
in between the two neurons (see Fig. 9), yielded a solution that
confused the two cells. Additional analysis of the spike wave-
forms revealed that they were rather similar, and that the clas-
sifier consistently failed to estimate the number of clusters cor-
rectly. Clearly, this “confusion region” is not confined to a single
track, rather a whole area around the track C is affected. Deter-
mining the boundaries of this area, as well as the probability of
confusion, is beyond the scope of this paper. It suffices to know
that all the sampling tracks that we tested are outside of this area.

3) Cell Tracking: This section demonstrates that the algo-
rithm is capable of re-optimizing signal quality under modeled
tissue movements (see Appendix III). Fig. 11 shows a typical
course of a cell tracking simulation for the sampling track V in
Fig. 9. Similar results were obtained for other sampling tracks.
After several iterations in the Search state, spikes were found
and the algorithm transitioned to the Optimize state. Upon con-
vergence, the algorithm transitioned to the Maintain state, where
it remained until the deviation of the signal quality exceeded a
tolerance, set in advance as 3 standard deviations of the signal
quality acquired initially. The degradation of the signal quality
was due to slow (relaxation) tissue movements. The optimality
was then maintained by toggling between the Maintain and Op-
timize state, where the frequency of the switching depends on
the time constant of tissue drift, and on the value of the toler-
ances. As the number of iterations increased, the cells drifted

Fig. 11. (Top) The average value of signal quality metric (PTPA) through iter-
ations. Note the drift in the signal quality metric due to tissue movement. The
dashed vertical lines denote the state transitions: S (Search), O (Optimize), and
M (Maintain). (Bottom) The position (depth) of the “electrode” as a function of
iteration number. Despite the cells’ drift, the objective remains fairly constant
(�0:5 mV) at the convergence iterations k = 21; 111;276; 743.

closer to their initial position (see Appendix III) and the algo-
rithm remained in the Maintain state for longer periods of time.
Although the newly found optima moved with the tissue, the
average signal quality remained unchanged, as seen in Fig. 11.
The simulation was discontinued after 900 iterations, which at

s/per iteration (see Appendix III), roughly corresponds to
hours of recording time. The time constant of the signal

quality drift and the frequency of the switching are consistent
with the experimental applications of our algorithm [1], where
SNR was used as a signal quality metric. Likewise, the number
of iterations to re-isolate the cell ranged between 10 and 20, sim-
ilar to our experimental findings.

VI. DISCUSSION

Stability of Cell Isolation and Tracking: Under dynamically
moving tissue conditions, a critical factor for the stability of cell
isolation is the iteration time, i.e., the average time necessary to
acquire and process data per iteration. While the iteration time
of our simulations was relatively short (see Appendix III), as
much as 30 s iteration time was observed in experimental appli-
cations [1], primarily due to low firing rates. If the iteration time
is long relative to the time constant of the tissue movement, by
the time the iteration is executed, the target cell may have moved
too far. Determining the exact conditions for this to happen, in-
volves not only the iteration time and the time constant of tissue
movement, but also the variable factors such as the step size of
electrode movement, the direction of tissue movements, etc. For
the representative sampling tracks of our model, and under the
assumption that the tissue moved parallel to the tracks, the tran-
sient tissue movements (see Appendix III) as fast as 0.5 m/s
were handled by the algorithm successfully. Said differently, the
displacement of the cells, as large as 3 m, between two itera-
tions, did not pose any threat for the algorithm to converge. A
similar analysis applies to the stability of cell tracking, with the
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Fig. 12. Observations of signal quality metric as a function of electrode po-
sition. The first two iterations, marked by (x), did not yield any observations
because the spikes were well below the noise level (marked by the dashed line).
The gray line is the regression function model estimated at the convergence it-
eration k . The overshoot, defined as: O u � u , was 8 �m in this case
(a single trial along the track V5).

addition of the signal quality tolerance as a parameter. Under
the same assumption, the algorithm easily compensated for slow
tissue movements ( min, see Appendix III) with the mean
velocities up to 2.5 m/min. Similarly, from the experimental
applications of our algorithm [1], we estimated mean tissue ve-
locities of m/min.

Limitations of the Algorithm: One of the limitations of the au-
tonomously movable electrode algorithm stems from the use of
PTPA as a signal quality metric. As the electrode is moved closer
to the target cell and the corresponding PTPA is increased, the
spikes from the neighboring cells may also have increasing am-
plitude. Because the PTPA metric relies solely on the informa-
tion from the dominant cluster, it could lead to a solution with a
strongly confounding activity. In a feature space, the maximiza-
tion of the PTPA metric can be viewed as a maximization of the
distance between the dominant cluster and some noise cluster,
obtained by projecting the noise samples to the feature space. A
more sophisticated definition of a signal quality metric would
also incorporate the distance between the dominant cluster and
other clusters, as suggested by [37]. However, such a definition
is very sensitive to misclassification, so the choice of a metric
should be viewed as a tradeoff between the sensitivity to mis-
classification and the probability of converging to a confounding
solution.

A potential source of confusion among cells is the overshoot
of the electrode’s position beyond the optimal location that
occurs frequently during adaptive regression model estimation
(see Fig. 12). Although, the average value of overshoot across
trials and sampling tracks was rather small ( m), values as
high as 11 m were observed occasionally ( % of the trials).
This raises the possibility that the algorithm switches its focus
to a new cell that lies along the sampling track, right behind
the target neuron. Clearly, the geometric arrangement of the
cells and sampling tracks, the cell size, the channel distribution,

SNR and many other factors determine the outcome of this
event. While the 10-micron overshoot was not a concern for our
simulations (soma diameter 35 m, cell distance 50 m), it may
be so for smaller, densely packed neurons (e.g., soma diameter

m, cell distance m). The practical consequences
of this event, however, are unclear, given that the cells are so
close together, and that the signal quality they provide is quite
similar.

Extensions to Experimental Applications: The remarkable
success rates (Figs. 9 and 10) are somewhat expected given
the regularity of firing of the simulated neurons. Highly regular
firing patterns may not always be observed in actual recording
experiments. Instead, the activity of neurons could be highly
nonstationary, with a wide range of firing rates. For example,
in experimental applications of our algorithm [1], the firing rate
was typically very low (a few hertz) and up to 20 s of data at
a single electrode position was necessary to correctly perform
unsupervised clustering and in turn correctly estimate the signal
quality metric. Clearly, a cell with an arbitrarily low firing rate
can be tracked, but an increased iteration time is likely. This
tradeoff can be practically handled by setting a lower bound for
the firing rate of the cell to be tracked, for example, a bound of
2 Hz was used in [1].

Another practical issue arises when an electrode comes too
close to a cell, which may damage the cell’s membrane, and
cause its subsequent death. This phenomenon is often concur-
rent with the observation of very large action potentials. This
situation can be practically handled by constraining optimiza-
tion process to stop when the signal quality metric exceeds some
suitably chosen upper bound. For example, an upper bound of

was used for the experiments in [1].
Finally, unpredictable events that sometimes arise in record-

ings from behaving animals, cannot be handled by a simple FSM
shown in Fig. 1. For example, the cell being tracked may fire
intermittently or may stop firing in the middle of the optimiza-
tion process. To prevent suboptimal or meaningless solutions,
the FSM can be augmented with additional states and transi-
tions that account for these effects [1].

The successful use of our algorithm in acute recording
experiments would significantly improve the productivity of
recording neuroscientists by freeing them from the tasks such
as manual positioning and frequent readjustments of the elec-
trodes. The algorithm is implemented in software, therefore, it
is portable and can be easily adapted to many configurations
that incorporate a computer controlled motorized microdrive.
Nowadays, many commercial motorized microdrives (e.g.,
Thomas recording GmbH) are controllable through a universal
serial bus, or serial port, which makes them suitable for integra-
tion with our autonomously movable electrode algorithm. Since
the role of human operator is minimized, the implementation
of the algorithm essentially reduces to the off-line selection of
parameters, similar to the ones given by Table I.

Extensions to Chronic Applications: If successfully im-
plemented in chronic recording systems, our algorithm could
potentially increase the longevity of the recording implant and
improve the signal yield and signal quality while reducing
the number of necessary implantation surgeries. These results
would be important for successful practical implementation
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of emerging brain-machine interfaces such as neural pros-
thesis. However, the implementation of autonomously movable
recording electrodes in chronic applications is contingent upon
the design of chronic motorized microdrives, and in the case of
neuro-prosthetic systems, upon the development of appropriate
microelectromechanical systems technology.

VII. CONCLUSION

Based on a detailed biophysical model of extracellular poten-
tials, we have developed an algorithm that autonomously finds
and maintains the optimal electrode recording position. For a
two-neuron model with the cell sizes, densities and orientations
representative of a cerebral cortex, we have tested the algorithm
along a representative set of sampling tracks. The basic results
are as follows: 1) for the sampling tracks exceeding a critical
SNR , the algorithm converges to a close vicinity
( m) of the exact optimum; 2) for the same set of sampling
tracks, the algorithm is capable of maintaining the optimality
of recorded signals in the face of modeled tissue movements,
with the tissue velocities comparable to those found in actual
recording experiments. The algorithm is facilitated by a sto-
chastic optimization of a suitably defined signal quality metric.
Although we have tested the algorithm against the signal quality
metric based on the spike amplitude, other signal quality metric
choices are acceptable, as discussed in [1]. The evaluation of the
signal quality metric requires a series of neural signal processing
steps such as spike detection, alignment and classification. For
fully autonomous operation, the processing steps must be imple-
mented in an unsupervised fashion. Our current research efforts
are directed toward finding the “best” spike features for unsu-
pervised classification and the design of a robust alternative to
the amplitude-based signal quality metric. Additional research
efforts are aimed at the implementation of our algorithm in novel
acute multielectrode recording devices.

APPENDIX I
BASIC CLUSTERING STEPS

A. Feature Extraction

Let be a matrix of aligned spikes, where
is the number of samples per spike. For simplicity, we con-

sider features that are linear function of data, i.e., ,
where is the feature matrix, is
the transformation matrix, and is the dimension of the fea-
ture space chosen by the user. The merit of this method is that

. We project the spike data onto the Haar wavelet
basis, which results in simple wavelet coefficient features. The

coefficients with the largest average magnitude are then se-
lected as features (formally the columns of are chosen as the
basis vectors corresponding to these coefficients). Clustering
with wavelet features is somewhat superior to clustering with
traditional principal component features, perhaps due to the fact
that the bi-phasic shape of the spikes (see Fig. 4) is better cap-
tured by the Haar wavelets, resulting in a more discriminative
low-dimensional representation.

B. Finite Mixture Models

Let be a sample of the feature vector ( th row of matrix
) corresponding to the th spike. In the finite mixture model

framework [38], it is assumed that this observation is sampled
from a PDF that can be modeled as a linear combination of
component PDFs, , i.e.,

where are the mixing parameters satisfying
is a parameterization of the PDF , and

. Viewed as a function of the parameters and
rather than a function of the feature data, the overall mixture

density is called the mixture likelihood and is given by

(7)

where we have assumed that the samples are statistically inde-
pendent. Conditioned upon a spike from cell , the distribution
of features is Gaussian.5 In other words,

are chosen as Gaussian components. The outliers
are handled through a uniform component ,
where is defined as the hyper-volume of the data [29], [30].
For the sake of notational compactness the symbol is re-
tained, although . If an observation belongs to a
well-defined cluster, it is generated by one of the Gaussian com-
ponents. Otherwise, the observation is generated by the uniform
component , and declared an outlier. The number of Gaussian
components defines the number of clusters.

C. Expectation-Maximization Algorithm

In general, the maximization of the mixture likelihood (7)
with respect to and must be performed numerically. For
this task we employ the EM algorithm, for which there is an ex-
tensive literature in the case of Gaussian mixtures [39]. Among
known limitations of the EM algorithm, sensitivity to the choice
of initial condition is the most serious one. As suggested by [29],
a reasonable initial guess can be obtained by using the heuristic
clustering techniques. We used the hierarchical clustering with
Ward distance [26], which provided reasonably good initial par-
tition of the data.

D. Model Selection

Given a family of candidate mixture models
, the goal is to find the order of a mixture that

optimally fits the data, subject to some objective function. Note
that the mixture likelihood (7) is a poor choice of objective, since
the most complex mixture is bound to have the highest

5Under the Gaussian noise assumption (Section II-C) the entries of the spike
matrix S are Gaussian random variables. Linear feature extraction further im-
plies that the features are also Gaussian.
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likelihood, which leads to over-clustering. From Bayes’ the-
orem, the probability of any candidate model, given the data
and some prior knowledge , can be written as

(8)

where denotes a probability and represents a PDF. Ide-
ally, the model that maximizes the posterior (8) should be
chosen. Assuming that the candidate models have uniform
priors , the maximization of the posterior
reduces to the maximization of the integrated likelihood term

. As the name suggests, the exact evaluation of this
quantity involves numerical integration in multidimensional
parameter space, e.g., a mixture of uniform and three Gaussian
components in a two-dimensional (2-D) feature space requires
19 parameters. We use an approximation based on the BIC,
although other successful approximations have been reported
[40]. The BIC is defined as

where is the number of parameters of the mixture . The
optimal mixture is the one with the highest BIC. Once the order,

, of the optimal mixture is known the clustering rule is en-
forced via

where is the label of the th cluster, and are the optimal
parameters of the mixture, found through the EM algorithm.

We finish this section by noting that for a successful clustering
step, the number of observations must be sufficiently high
with respect to the maximal order of the candidate model.
If not, the covariance matrices of individual components are typ-
ically ill-conditioned or singular, and may cause the EM algo-
rithm to fail. Since we do not know how many spikes will be
detected at each sampling position, we will choose the maximal
order adaptively (see Table I).

APPENDIX II
ADAPTIVE ESTIMATION OF REGRESSION FUNCTION MODEL

Let be a sequence of (electrode) positions
after iterations with the corresponding signal quality metric

, where the variable
signifies the random sampling of . At each position

, multiple observations of the signal quality metric
are taken, i.e., ,
where is the total number of observations at . In general,

. The regression function after
iterations is modeled as follows:

(9)

where are polynomial basis functions,
are the corresponding expansion coeffi-

cients, and is the number of basis functions. The justifica-
tion of this model choice will become clear shortly. Note that
the model depends linearly on parameters , and that nei-
ther , nor are known and, therefore, must be estimated
from the data. Similar to Appendix I-D, the estimation of the
“right” amounts to a model selection problem. Given a family
of models , where is
the maximal order of the candidate model (a number chosen
before experiment begins), the goal is to select the model that
optimally fits the data. The definition of optimality affects the
estimate significantly, therefore, it is crucial to choose the
metric appropriately. In particular, maximizing the likelihood
of the model leads to a selection of the most complex model

and over-fitting occurs. An especially elegant solu-
tion to the problem of over-fitting is offered by Bayesian prob-
ability theory [41], which in the case of polynomial basis func-
tions yields solution analytically and is, therefore, amenable to
fast calculations. This is also the main argument against the use
of more general basis functions, such as radial basis functions, in
the model (9). Generally, more complex basis functions render
the Bayesian model selection computationally expensive, as dis-
cussed briefly in Appendix I-D. In this case the model selec-
tion is typically performed by either heuristic [42], or approxi-
mate [43], [32] criteria, both of which are inferior to Bayesian
model selection. On the other hand, signal quality curves are
often simple (see Fig. 7), and they can be accurately modeled
using polynomials of low order. To increase the flexibility of
the model and to account for modeling of more complex regres-
sion functions, we can always increase the maximum order
of the candidate model.

A. Bayesian Model Selection

Given a family of candidate models
, the goal is to select the order of the model that is

most probable in view of the data and some prior infor-
mation, . The probability of the model given and
follows from Bayes’ theorem

(10)

where is short for with fixed is
a probability mass function and is a PDF. For successful
Bayesian model selection, the number of iterations has to
be sufficiently high with respect to the maximal order . We
denote the smallest admissible number of iterations by . For
iterations up to , the sampling of data is simply not adequate
to reliably model the regression function and the heuristic of the
recursive stochastic optimization for will be discussed
later. The order of the model is selected that maximizes the
posterior probability , i.e.,
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In order to perform the maximization above, the posterior
of each candidate model must be evalu-

ated. To carry out this calculation, the unknown parameters
must be integrated out through marginalization [44]. Because
of the Gaussian noise assumption and linear dependence of
the model on the parameters, the marginalization of , and
in turn the calculation of the posterior , can
be performed analytically. The details of this calculation are
omitted, but a similar model selection example can be found in
[44]. In the spirit of Bayesian probability theory, the posterior

calculated at iteration is used as a guess for
the prior at iteration in (10). The recursion
is initialized as at iteration , which
reflects our complete initial ignorance about the model. Once
the order of optimal model at iteration is known, the
parameters of the model need to be estimated.

B. Parameter Estimation

While Bayesian probability theory can also be used to infer
the posterior of parameters given the observations and
prior information , it is easier and computationally more effi-
cient to use a maximum likelihood (ML) method, which under
the linear model (9) and Gaussian noise assumption, reduces to
the linear least squares method. As the number of observations
increases, the influence of the prior information on the esti-
mate decreases, and the ML solution approaches the maximum
posterior solution obtained through Bayesian probability theory.
Therefore, the parameter estimation problem can be formulated
as

(11)

where and the ma-
trix consists of identical rows given by:

. The solution to (11) reduces to finding the
pseudoinverse of a matrix. Once the optimal parameters are
estimated, the optimal model at iter-
ation is fully specified.

C. Recursive Stochastic Optimization With Basis Functions

From (9) it follows that the derivative of the regression
function at iteration can be estimated as

Similarly, we can estimate at iteration , denoted by .
Based on this we write the following variant of the Newton’s
method

(12)

where is an appropriately chosen scale factor. In prin-
ciple, the scale factor can be used to calibrate the step size
in (12), still large steps may occur occasionally, especially in
the early iterations when the estimated model may be

far from the true function . From an experimental per-
spective, large steps of the electrode are generally unacceptable,
therefore, we limit the maximum step size by a constant ,
chosen before the experiment. This is especially useful for it-
erations where the optimal model is found to be a straight line

, which results in and infinitely large step
size in (12). Likewise, if for some we obtain a flat line
model, i.e., , then and the recursion (12) breaks.
In this case we use a simple control strategy

(13)

where is a constant step size chosen before the experiment
initiates. Finally, for iterations the control strategy (13)
is employed again.

APPENDIX III
MODELING TISSUE MOVEMENT

The nature of neural tissue movement caused by the move-
ment of a recording electrode is not well understood. The un-
derstanding of the overall process likely involves a complex me-
chanical analysis. Here we develop a simple model of the tissue
movement. The purpose of this model is not to capture the com-
plexity of the tissue dynamics, but rather to perturb the cell’s
position, so that the algorithm can be tested against these types
of disturbances, which are commonly found in acute extracel-
lular recordings.

It is believed that the movement of neural tissue in response
to electrode movement has two significant time scales: fast and
slow. Due to friction forces, even the sharpest electrode will
cause tissue compression as the electrode is advanced through
the neural tissue. The time scale of these movements is short
(seconds and minutes). Presumably, the energy stored through
the tissue compression is released through subsequent relax-
ation, which is a much slower process (time constant 1/2–1 h).
While the fast (transient) tissue movements are more relevant
for the convergence of the algorithm (Optimize state), the slow
(relaxation) movements are more relevant for the stability of the
optimal solution (Maintain state).

Let denote the position of the electrode tip
and the position of the cell (its soma center) at iteration

, respectively. We simply assume that all the segments
of the cell undergo the same displacement (rigid motion), which
is proportional to the electrode displacement, i.e.,

(14)

where is a proportionality constant, is a gain factor and is
a time constant of the tissue relaxation. Let be the iteration at
which the convergence is attained. Since , for transient
tissue movements , the last term in (14) can be ignored.
In this case we have , (see Fig. 13), where

and are the cell displacement and the
electrode displacement, respectively. Under the assumption that
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Fig. 13. Initial position (solid line) and the position at iteration k (dotted line)
of the electrode and the cell. The cells farther from the electrode path undergo
smaller displacement.

the cells closer to the electrode path are affected by the electrode
displacement more than the cells that are further away, we write

where is the distance between the center of the soma and the
electrode track, and is a suitably chosen constant. For example,

if the center of the soma lies directly in the electrode
path, and approaches 0 for the cells that are far away from the
electrode track (see Fig. 13). The rate of the decay of is reg-
ulated by the constant ( m for this study). The gain
factor determines what fraction of the electrode dis-
placement translates into the cell displacement ( for the
present study). For example, the displacement of the electrode
by 100 m, causes the displacement of 30 m of the cell whose
soma center is located 20 m from the electrode path.

For relaxation movements , we have
, where is a constant vector defined as
. For very large , the tissue relaxes back to

its original position, i.e., . For the present study we
chose , which given the fact that a single iteration takes

s (2 s-simulation, 4 s-processing), translates into a time con-
stant of 30 min.
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