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Abstract— In this article we develop a simple algorithm for
localization of electrical sources in neurons. The algorithm is
based on multiple measurements of neuron’s action potentials
acquired from multiple sensors, such as tetrodes. We show
that in many cases this problem can be solved analytically.
We also give an alternative formulation of the problem that
is applicable when the analytical approach has no solution.
We further show that the problem of source localization and
the estimation of the source strength are coupled and can be
solved simultaneously. Our method was tested on a single-
neuron model with complex dendritic geometry and realistically
modeled membrane dynamics. Simulation results suggest that
our technique is capable of accurately estimating the location
and strength of nearby current sources.

I. INTRODUCTION

Recent advances in the development of extracellular
recording technology for the brain have been instrumental to
address complex scientific questions such as neural popula-
tion coding, somatosensory organization, and neural network
connectivity. Recording is typically accomplished by placing
multiple high-impedance electrodes (microelectrodes) [1],
[2], or micro-machined silicon electrode arrays [3], [4], in a
close proximity to active neurons and by measuring voltage
perturbations caused by neurons’ action potentials (APs).
Similarly, microelectrodes with multiple closely spaced sen-
sors have been shown to improve the signal-to-noise ratio
(SNR), thereby facilitating the identification of a single neu-
ron activity against the background noise and the activities of
nearby neurons—a process commonly referred to as single-
unit isolation [5].

Here, we report on a simple algorithm that extends the
use of multi-sensor recording electrodes beyond a single-
unit isolation. In particular, we show how a neural signal
from an array of 4 sensors (a tetrode) can be used to
estimate the location of a current source as well as the
strength of the source. Our algorithm is based on a simple
model of propagation of electric potentials in a volume
conductor, referred here as forward model. The estimation
of the source location and strength is then posed as an
inverse problem. If the forward model provides a “good” fit
to measured potentials, this inversion is exact and yields a
closed form solution. In the presence of noise and distributed
sources, which more closely correspond to reality, the exact
inversion is not guaranteed and we pose the inversion as an
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optimization problem by minimizing the mismatch between
the measured potentials and the potentials predicted by the
forward model.

II. BACKGROUND AND SIGNIFICANCE

Localization of neural sources is a problem common to
various brain imaging modalities, such as electroencephalog-
raphy (EEG), or magneto-encephalography (MEG). Despite
the fact that EEG signals and extracellular potentials are
closely related, the idea of source localization based on
extracellular potentials appears to be largely unexploited.
Oweiss and Anderson [6] proposed a source localization
algorithm based on a planar sensor architecture, commonly
referred to as the Michigan probe [7]. Their technique uses
a forward model based on finite element analysis, which
coupled with optimization yields an estimate of the source
location. While details of their optimization approach were
not disclosed in [6], the complexity of the forward model
implies the use of search techniques. Chelaru and Jog [8]
developed a source localization algorithm for the tetrode
architecture based on a simple forward model, which is
similar in spirit to the one proposed here. However, there
are several important differences which will be pointed out
in Section III. Recent studies [9], [10], report recordings
from a large number of cortical units with high-density
two-dimensional (2-D) silicon arrays. Signals from multiple
sensors were then used to estimate the vertical positions of
neurons or their 2-D projections. These approaches, however,
have no basis in volume conductor theory or biophysics, and
seem largely heuristic. In addition, no attempt was made to
localize sources in 3-D.

Localization of neural signal sources is potentially benefi-
cial to several research areas. For example, it could alleviate
the guidance of microelectrodes in acute recording experi-
ments, which are tedious and time consuming. Localization
could also help develop better feedback control algorithms
for stabilization of extracellular recordings [11], [12]. This
could lead to improved experimental productivity and higher
quality data. In chronic recording experiments, the estimation
of the position and strength of signal sources will have
important implications for long-term studies of neuronal pop-
ulations, such as neuronal circuit connectivity [10], extracel-
lular current source density [9], and functional organization
of cell assemblies [13].

III. SOURCE LOCALIZATION ALGORITHM

When an AP is initiated, the electric current enters a
neuron through its active membrane, flows through the cyto-
plasm, and then leaves the neuron through regions of passive
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membrane [14]. Therefore, when viewed from the outside,
the neuron behaves as a continuum of current sources and
sinks. For localization purposes, however, this model is
overly complex; in a simplified scenario the neuron can be
modeled as a single point source (or sink), located at po-
sition, (x, y, z), with the time-varying current strength I(t).
Assuming extracellular space is an unbounded, isotropic, and
homogeneous volume conductor with a conductivity (per unit
length) σ, the potential at a sensor Si is found as

φi(t) =
I(t)

4πσ ri(x, y, z)
(1)

where ri(x, y, z) =
√

(x − xi)2 + (y − yi)2 + (z − zi)2
and (xi, yi, zi) is the location of the sensor Si. Note that
φi(t) < 0 indicates the presence of a sink rather than a
source. The time in (1) is fixed to t = t∗, where t∗ is
chosen by the user (typically the time at which AP attains
the peak value). For 4 sensors, Si (i = 0, 1, 2, 3), the forward
model (1) can be rewritten as

(x − xi)2 + (y − yi)2 + (z − zi)2 =
k2

φ2
i

∀i (2)

where k = I(t∗)/(4πσ) and φi = φi(t∗). Note that (2)
represents the equation of a sphere, centered at Si, with
the radius inversely proportional to the potential, φi. The
solution to (2) has a geometric interpretation: the source
lies at the point of intersection of the 4 spheres. The
localization scheme proposed in [8] uses essentially the
same system of equations as (2), although the solution
was found numerically. Note, however, that the nonlinearity
in (2) is quadratic, hence the solution may be obtained in
a closed form. Secondly, quadratic equations normally yield
two solutions, and depending on initial conditions, numerical
schemes may converge to the confounding solution. Finally,
the system (2) may have no real solution, e.g. the 4 spheres
may not have a common intersection point.

To solve (2) analytically, we define (x0, y0, z0) as the
origin, yielding

x2 + y2 + z2 =
k2

φ2
0

(3)

By subtracting (2) with i = 1, 2, 3, from (3) we obtain

2xxi + 2yyi + 2zzi − R2
i =

k2

φ2
0 − φ2

i

i = 1, 2, 3 (4)

where R2
i = x2

i + y2
i + z2

i . Using vector notation, we have
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where φij = 1
φ2

i
− 1

φ2
j

. Written in a compact form, this yields

2CX = k2Φ + R (5)

with the obvious definitions of C, X, Φ, and R. If the
sensors are not confined to a plane, the matrix C is invertible

and the solution to (5) is simply

X =
1
2

C−1(k2Φ + R) (6)

Note that for planar sensor arrays (e.g. the Michigan probe),
C is not likely to be invertible. To complete the solution (6),
the constant k must be calculated. To this end, we substi-
tute (6) into (3) (x2 + y2 + z2 = XTX) which yields

ΦTQΦ k4 +
(

2ΦTQR− 4
φ2

0

)
k2 + RTQR = 0 (7)

where Q :=
(
CCT

)−1
. Since (7) is a biquadratic equation

in k, its closed form solution is easily found. Generally, (7)
has 2 solutions, k2

(1) and k2
(2), which when substituted in (6)

will yield 2 possible source locations. However, the spurious
solution normally represents the reflection of the true solution
through the surface of the tetrode and is easily identified.
An important difference between our approach and the one
proposed in [8] is that once k2 is known from (7), we
can estimate the current at the source as I(t∗) = 4πσk.
After eliminating the spurious solution, there will be 2
such solutions, but one of them can be eliminated based
on the sign of φi. Finally, note that for practical purposes,
estimating I(t∗) requires the knowledge of the extracellular
conductivity, σ.

When the forward model (1) is exact, the solution (6) is
guaranteed to exist in R

3. However, if there is a mismatch
between φi, predicted by the model, and measured potentials,
denoted by φ̄i, the solution of (7), and consequently (6),
may not be real. This is likely to be found in experimental
situations for at least a couple of reasons: (i) the potentials
are not generated by a single source, and (ii) the presence
of noise, ηi, distorts the potentials (e.g. φ̄i = φi + ηi).
Note that when the real solutions do not exist, numerical
schemes will fail to converge, which is consistent with the
study in [8], where failed convergence was reported in about
13% of cases. To circumvent this situation, we propose
to reformulate the source localization problem within an
optimization framework. We define a cost function as a
mismatch between the measured potential, φ̄i, and model’s
prediction, φi,

J (k, x, y, z) =
1
2

3∑
i=0

[
φ̄i − k

ri(x, y, z)

]2

(8)

and we proceed by finding its minimum. Note that J ≥ 0
and that the equality holds if and only if φ̄i = φi, in which
case the minimizer of (8) can be found analytically from (6)
and (7). In general, however, the solution cannot be found
analytically, and we resort to numerical techniques. Both the
gradient and the Hessian of J can be calculated in a closed
form, which makes the minimization of J amenable to
(fast) Newton’s method. In summary, our source localization
algorithm first attempts to find the closed form solution
based on (6) and (7). If complex conjugate solutions appear,
their real parts are taken as an initial condition for the
minimization of (8), and the minimizer of J is taken as
a solution.
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Fig. 1. (A) Tetrode in the region of the proximal basal dendrite. (B) Tetrode in the vicinity of the soma. (C) Tetrode in the region of the distal basal
dendrite. The straight line represents the axon, the cone-like cylinder is the axon hillock, and the adjacent axonal region is the initial segment. The tetrode
sensors are shown as circles (4th sensor not visible). The estimated source locations are shown as black squares (3 based on t∗ corresponding to the peak
of APs, 2 and 1 based on t∗ that precedes the peak by 1 and 2 samples, respectively). APs recorded by the 4 sensors are shown as black traces (duration
2 ms).

IV. EXPERIMENTAL RESULTS

When tested with a single current source (sink), located
at an arbitrary position, our algorithm gave a 100% ac-
curacy in terms of both the location and strength of the
source. This is not surprising since in this case the forward
model (1) is correct, and its inversion reduces to solving (6)
and (7). To make the problem more realistic, we used a
computational model of a pyramidal neuron from layer 5
of the cat visual cortex [15]. Fig. 1 illustrates the complex
dendritic geometry of this type of neuron. Low-density
sodium channels were present in the soma and dendrites,
while the axon hillock (AH) and initial segment (IS) had
high-density sodium channels. Fast potassium channels were
present in the axon and soma, but were not present in the
dendrites. This type of channel distribution is responsible for
spike initiation at the axon initial segment [15]. The neuron
was activated by synapses uniformly distributed throughout
the dendrites [16]. Intracellular potentials were computed
using the NEURON simulator [17], with 3720 isopotential
segments, while extracellular potentials were simulated using
the line source approximation [16], [12]. The sampling rate
was kept at 20 kHz throughout simulations. The tetrode
geometry specifications were adopted from a commercial
supplier [18], and the distance between sensors was between
20 and 40 µm.

Based on the channel distribution, the strongest transmem-
brane currents are found in the AH/IS area, although the
soma is a significant contributor of the potential due to its
large surface area. The contribution of the dendrites to the
potential is mostly local, and falls off rapidly with distance.
Thus, it is expected that the estimated source location will
be somewhere in the vicinity of the soma-AH-IS complex.

When the tetrode is relatively distant from the cell, the
principal sources (soma, AH, IS) appear localized, and the
estimated source location does fall in the vicinity of the
soma. The contribution of the dendrites is negligible in this
case. At the same time, the localization invariably admits a
closed form solution, based on (6) and (7). This is hardly
surprising given the fact that the forward model (1) provides
a good approximation of highly localized sources. As the
tetrode moves closer to the soma (Fig. 1 (A)), the principal
current sources appear more diffused and the localization
based on the inversion of (1) becomes less accurate, although
the closed form solution is still feasible. Interestingly, the
spurious solutions tend to be located inside, or near the
surface of the tetrode, and were easy to rule out. If the tetrode
is moved forward into the dendritic tree (Fig. 1 (B)(C)),
some of the dendrites wind up very close to the surface of
the tetrode, and their effect is no longer negligible. These
local contributions may add to the variability of recorded
APs. In these situations, the inverse problem rarely admits
a closed form solution, and the optimization must be per-
formed instead. Furthermore, the effect of local dendrites
seem to bias the estimated source locations toward the tetrode
(Fig. 1 (B)(C)).

Since localization is based on a specific time t∗, we
investigated how varying t∗ affects the estimates (Fig. 1 (A)).
When the peak of APs is used (marked by 3), the estimated
source location is closer to the soma, albeit biased by the
large dendritic trunk that passes nearby. Moving t∗ one
sample before the peak of APs, causes the estimate (marked
by 2) to move toward the tetrode. Moving t∗ forward by two
samples causes similar effect (position marked by 1). Thus,
we conclude that the estimated sources tend to shift dynam-
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ically, as different phases of APs are used for localization.
This phenomenon is explained as follows: the peak of APs
are mostly due to the principal sources (soma, AH, IS). Due
to relatively sharp rising edge of APs, moving t∗ forward
by a sample, or a couple of samples, changes the measured
potentials, φ̄i, significantly. At this point the contribution of
the principal sources has not been fully developed and is
more comparable to that of the dendrites, hence the shift.
For experimental data, however, any feature of APs other
than its peak value is likely to be very sensitive to noise.
Thus, in experimental set-up, we expect the peak of APs to
be used for localization purposes, as was done in [8].

We now turn to the estimation of the source strength,
I(t∗). If the source (sink) was confined to a single segment,
it would be expected that I(t∗) approximates the transmem-
brane current of the segment at time t∗. Since a number of
segments are involved in the generation of the potential, I(t∗)
is likely to represent the gross strength of the most relevant
segments. To test this hypothesis, the segments were ranked
according to their distance to the estimated source location,
and the transmembrane currents of the n closest segments
were added. The number of segments, n, was increased
until the gross current matched the estimated source strength
[n = 120 in Fig. 1 (A)(C), n = 295 in Fig. 1 (B)]. For
convenience, these relevant segments are shown in cyan,
magenta and green, for the 3 respective tetrode locations.
While largely heuristic, this approach essentially agrees with
our prior conclusions: the dendritic trunk seems very relevant
in Fig. 1 (A), the soma and AH are relevant in Fig. 1 (B),
while IS is relevant in Fig. 1 (C). Also note that in the latter
2 cases, the relevant segments involve a large number of
dendrites.

V. CONCLUSION AND FUTURE WORK

Based on elementary ideas from volume conductor theory,
we have developed a computationally simple neural source
localization algorithm for a tetrode sensor layout. We have
shown that the problems of source localization and source
current estimation can be solved simultaneously, provided
that the conductivity of extracellular medium is known.
When the sources of neural signal are localized in space,
this inverse problem can be solved analytically. Otherwise, a
simple optimization routine, based on Newton’s method, is
used.

To investigate the applicability of our algorithm in ex-
perimental set-up, the present work needs extensions in two
areas: (i) the addition of realistically modeled neural noise
to mimic noisy recording conditions, (ii) the modification of
the forward model (1) to a more realistic model, such as a
dipole (source + sink). Both extensions are non-trivial. We
have recently pointed out the importance and implications of
realistically modeled neural noise [19], [20] in the context
of neural signal processing. Noise acquired during electro-
physiologic recordings has been instrumental in uncovering
some limitations of classical approaches to noise modeling.
Dipole localization is an inherently ill-posed problem, and its
solution will likely require some form of regularization [21].

However, similar problems are routinely faced in EEG dipole
localization, where they have been handled successfully.
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