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Ever since scientists discovered neu-
rons, they have been trying to
understand how they func-
tion and communicate to
perform control tasks. Al-
though some mathemati-

cal description of nerve and muscle
membrane properties preceded the
monumental work of Hodgkin and
Huxley [1], it was their equations for
ionic channels that created the natu-
ral starting point for the discipline of
computational neuroscience. This led
to various types of mathematical models
of neurons, enabling us to treat them as
nonl inear dy-
namical systems
driven by sets of
differential equa-
tions. One such
dynamical system and an associated simplified model, in-
troduced by Wilson [2], [3], is discussed in this article. An
analysis of the transient response of the dynamical system
shows the existence of a limit cycle in its phase plane,
which corresponds to membrane potential oscillations
(spikes) in the temporal domain.

As an important element of this article, we focus on the
problem of representing an analog signal with a spike train, a
representation commonly associated with a population of
neurons. In the process of perception and control, the asso-
ciated analog signals are believed to be encoded by a popu-

lation of spiking neurons wherein the spikes are respon-
sible for conveying the encoded information from

one cell to another. Following prior work of
Eliasmith and Anderson [4], [5], we describe

how a collection of spike trains might en-
code analog signals.

Implementation of a suitable decoder
(filter) is shown to produce a reasonably

good reconstruction of the encoded an-
alog signal. The decoding filter, as de-
scribed later, could be a simple
counter, or it could be designed via a

formal optimization, assuming that the
filter is causal and linear shift invariant
or noncausal with impulse response
generated by a family of basis func-

tions. Each of the three cases will be de-
tailed later. For a comprehensive discussion on how

spikes encode signals and how signals can be decoded,
the reader is referred to [6].

In the section on encoding and decoding using a pop-
ulation of neurons, we generalize the basic idea of an
on/off pair of neurons to a population of neurons and
show how the activity functions of these neurons can be
used to encode and decode an analog signal. The term “ac-
tivity” refers to the number of spikes in a given fixed win-
dow of time. Initially, the considered signals are constant.
Subsequently, we consider signals that are changing in
time and show that a neural population can be organized
so that it solves ordinary differential equations (ODEs).
Specifically, we show that an ODE can be equivalently
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written as a system of ODEs with state variables that are
the activities of a given population of neurons. Assuming a
piecewise linear function as the activity curve of the asso-
ciated neuron, we analyze the problem of controlling a
two-link robot arm with controls generated by using the
above-described population of neurons. The control sig-
nals are obtained as a linear combination of the activity
functions of the neural population.

Neural populations arise naturally in
the brain, and in many instances it is un-
clear what computation, if any, they per-
form. To illustrate a practical example that
we are currently studying [7], we describe
the neuronal structure of the visual cortex
of freshwater turtles. The role of the neu-
ral population in the cortex can only be
conjectured, and it is possible that the
neurons provide a precise representation
of the position and velocity of a moving
source of light. We show via simulations that the appearance
of a novel stimulus in the visual space produces a wave of ac-
tivity that propagates across the visual cortex. “Activity” here
refers to the level of the membrane potential depolarization of
individual cortical cells. Using voltage-sensitive dyes, these
activities have been recorded by Senseman [8] and his collab-
orators. Using a simulation model of the visual cortex, we are
able to reproduce these waves of activity for different input
stimuli. The problem we are interested in studying is to what
extent the inputs can be discriminated by observing the waves
in the cortex. We show that the cortical waves can be analyzed
via the Karhunen-Loeve (KL) decomposition [9], where the
cortical waves are represented in a low-dimensional subspace.
A three-dimensional phase space provides a good representa-
tion of the cortical wave and can be used to predict the loca-
tion of a source of light in the visual space. We have also shown
(see [10]) that the cortical waves can predict the velocity of a
moving source of light in the visual space.

To summarize, this article emphasizes the role of a popu-
lation of neurons in representing analog signals for compu-
tation and control, as well as its role in representing
spatiotemporal waves of activity such as those observed in
the visual cortex of a turtle.

Structure of Neurons
A neuron consists of a cell body and one or more slen-
der branches that grow out from it [11]. The cell body
is called the soma, and the branches are termed
neurites. In most neurons, there is one long neurite
called the axon and several shorter neurites called
dendrites. An axon is functionally defined as a neurite
that conveys information away from the cell body. A
dendrite is a neurite that conveys information toward
the cell body. A specialized site at which communica-
tion between one neuron and another takes place is
called a synapse (see Fig. 1).

Ion Channels
Like all other cells, neurons are enclosed by a cell mem-
brane, which is composed mainly of lipids and proteins. The
lipid structure of the membrane is double layered and im-
permeable to ions. The proteins are usually embedded in
the membrane, and some of them have hollow openings in
the center that allow ions to move passively across the

membrane by diffusion. These proteins are known as ion
channels. On the other hand, there are membrane proteins
that use the energy stored in the cell to transfer ions across
the membrane in an active fashion. These proteins are com-
monly known as ion pumps.

Membrane Potential
Across the membrane of each cell is a small difference in elec-
trical potential, with the inside of the cell being electrically
negative with respect to the outside. This difference, called
the membrane potential, results from a separation of positive
and negative charges across the cell membrane and is gener-
ated by the movement of ions (see Fig. 2). Three factors can
induce an ion to cross a membrane: a difference in concentra-
tion of the ion on the two sides of the membrane, an electrical
potential difference across the membrane, and the action of
an ion pump. Except when electrically active, neurons are in a
steady state, neither gaining nor losing ions of any particular
type. In living neurons, the membrane potential is estab-
lished by the diffusion of potassium ions out of the cell. The
potential is maintained by the action of the sodium-potas-
sium exchange pump, which expels the small number of so-
dium ions that leak into the neuron while taking up the
potassium ions that have leaked out. If we change this poten-
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Figure 1. Structure of a neuron showing the cell body, dendrites, axon,
and synaptic terminals. The arrows indicate the direction of the flow of
information.
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tial difference between the inside and outside, the change
can propagate in much the same passive way that heat is con-
ducted down a metal rod.

The flow of information through a concentration gradient
may be adequate for short cells (such as rods or cones in the
retina), but if the axon is long, this mechanism is completely in-
adequate. To overcome this problem, most nerve cells have
developed an efficient mechanism called the action potential.

Action Potential
A nerve impulse, technically called an action potential
(spike), is a brief, transient reversal of the membrane poten-
tial that sweeps along the membrane of a neuron (see Fig. 3).

An action potential has several
important features. It is tempo-
rary, lasting only about a milli-
second. Its appearance at one
location on a membrane may
induce an action potential in
the adjacent membrane as
well; hence it propagates along
the length of the neurite at full
amplitude without fading pas-
sively. It is all or none (i.e., it ei-
ther reaches its full amplitude
or does not occur at all). And
its amplitude does not depend
on the magnitude of the stimu-
lus that elicited it.

To generate an action po-
tential, the neuron must be
stimulated sufficiently so that
the membrane potential is de-
polarized to reach or exceed
some minimal value, called the
threshold. The channels that
are involved in the generation

of an action potential are voltage sensitive (voltage gated);
their gates open or close in response to the magnitude and
polarity of the electrical potential across the membrane.

Models of Neural Dynamics
To understand how to formulate a mathematical model of a
neuron, we need to explain the electrical properties of a cel-
lular membrane. Hodgkin and Huxley [1] recognized three
different components of a membrane current, which they
called sodium, potassium, and leakage. Today, the names
Na-channel and K-channel are universally accepted for the
corresponding ionic channels in axons. The name leakage
channel is also used, although there is no experimental evi-
dence regarding the ions or transport mechanism involved.
These channels make a membrane permeable to ions, ren-
dering its resistance finite (a membrane entirely lacking in
channels would have an infinite resistance). While sodium
and potassium channels have voltage-dependent (gated)
resistances (conductances), leakage channels have conduc-
tances that are constant. To a first approximation, the cur-
rent-voltage law is linear for every channel in question (i.e.,
Ohm’s law applies):

( )I g V Ej j j= − , (1)

where E j is the equilibrium potential of the ion in the jth
channel, g j is the conductance of the channel, I j is the cur-
rent in the channel, and V is the membrane potential (see
Fig. 4). In addition to containing many conducting channels,
the lipid bilayer of a biological membrane separates internal
and external conducting solutions by an extremely thin in-
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sulating layer. Such a narrow gap between the two conduc-
tors forms, of necessity, a significant electrical capacitor C.
Having explained the basic behavior of the membrane, we
can view one such neuron as a resistor-capacitor (RC) cir-
cuit. In modeling complex neurons, a compartmental model
approach is frequently used. The neuron is divided into
several compartments, each modeled as an RC circuit.
Here we assume that the neurons are one-compartment
models (Fig. 4).

The circuit equation corresponding to Fig. 4 is obtained
as follows:

C
dV
dt

I I I Il= − − − +Na K in, (2)

where I in is the injected current to the cell and I Na , I K, and I l

are the sodium, potassium, and leakage currents, respec-
tively. Combining (1) and (2), we obtain

( ) ( ) ( )C
dV
dt

g V E g V E g V E Il l= − − − − − − +Na Na K K in.

The original work of Hodgkin and Huxley [1] proposes that
the voltage-dependent sodium and potassium conduc-
tances are given as g g m hNa Na= 3 and g g nK K= 4 , where gNa

and gK are constants, m h n, , are driven by the following dif-
ferential equations:
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and α m , β m , α h , β h , α n , β n are nonlinear functions of the volt-
ageV , often having discontinuities. Rather than dealing with
such a complicated system, it is a common practice to sim-
plify the underlying dynamics while retaining some of the
basic features of Hodgkin-Huxley-type kinetics. These sim-
plifications often have a form of second-order dynamical
systems and are frequently referred to as two variable mod-
els (see [12]). For example, the dynamics corresponding to
the variable m is relatively fast compared to those of h and n;
therefore, it is reasonable to approximate the value of m by
its steady state m∞ . According to [3], the simplified mem-
brane equation of a mammalian neocortical neuron can be
written as

( ) ( )C
dV
dt

m V E R V E IK= − − − − +∞ Na in26
(3)

dR
dt

R R

R

= −∞

τ
,

where m∞ and R∞ are second-order polynomials

m V V

R V V
∞

∞

= + +

= + +

17 8 476 33 8

124 3 7 3 2

2

2

. . .

. . .

and where the leakage current in (3) has been eliminated via
a change of variables. To keep the constants within reason-
able bounds, the membrane potential has been scaled down
by 100. Given this convention, ENa = 0 5. and EK = −0 95. corre-
spond to 50 mV and −95 mV, respectively. For an injected
current input I in = 0 2. nA, we observe that the membrane po-
tential V is spiky, as shown in Fig. 5. The frequency of the
spikes depends on the amplitude of I in . Thus, the spike fre-
quency of V encodes the analog signal I in . This idea is known
as rate coding. The oscillations in Fig. 5 correspond to a limit
cycle in the ( , )V R phase plane. As the parameter I in in-
creases, the number and character of equilibria change,
evolving from a stable node (negative values of I in) to an un-

August 2001 IEEE Control Systems Magazine 31

IC

Iin

C
INa

gNa

IK

ENa EK El

gK

Il
gl

V

Figure 4. The RC circuit of a cell showing the sodium, potassium,
and leakage channels. Note that the conductances are functions of
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stable node (I in ≥ 018. ), the latter being followed by a limit
cycle, as shown in Fig. 6 (see [2] for details). Note that the
trajectories are almost horizontal, except where dV dt = 0,
indicating that the variable V is changing more rapidly than
the variable R. Consequently, the variable V is called the fast
variable and the curve dV dt/ = 0 is called the slow manifold.

Using the Poincaré criterion, one can easily verify the stabil-
ity of the limit cycle, which has been generated by applying
the current stimulus I in = 0 2. .

Encoding and Decoding Signals
Using On/Off Cells
Encoding Analog Signals
A neuron has the capability of representing an analog time
signal as a spike train. The firing rate of the neuron encodes
the amplitude of the analog signal. The encoding scheme is
successful as long as the signal remains positive and above
a certain threshold (i.e., a neuron is unable to encode sig-
nals below this threshold). To represent signals that might
vary between a positive and a negative value, we use the
idea of on and off cells.

In the vertebrate retina, a ganglion that produces an on
response (i.e., increases its rate of firing when the center of
its receptive field is stimulated by light) is called an on-cen-
ter ganglion cell. Conversely, an off-center ganglion is a cell
that decreases its firing rate when the center of its recep-
tive field is stimulated by light. One such on/off cell circuit
is shown in Fig. 7. The basic unit of the circuit is the model
of the neuron described by (3), although it may be any
other biologically valid model of a neuron or its approxima-
tion, such as the integrate and fire model or the leaky inte-
grate and fire model (see [13]). There is no actual difference
between the on and off cells, except that the input has been
inverted prior to entering the off part of the network. Many
neurons are capable of producing a spiky output even if no
stimulus is applied. This introduces the notion of a
so-called background firing rate, represented by a bias in
both on and off units. The spiky outputs of both cells can
be decoded using different types of decoding schemes,
which will be discussed next.

Various Methods for
Signal Reconstruction
We have seen that analog signals can be encoded into se-
quences of spikes and that the firing rate of neurons is pro-
portional to the amplitudes of the corresponding stimuli.
The nervous system faces the reverse problem, determin-
ing the meaning of a spiky pattern in the real world. There-
fore, a legitimate question naturally arises as to what would

be a good decoding scheme: How would one ex-
tract the analog signal (stimulus) that is repre-
sented by a sequence of spikes? Even though
there is no scientific evidence that stimulus re-
construction takes place in an actual neural sys-
tem, the problems that the nervous system
solves on a routine basis suggest such a
calculation. For example, the fly can initiate a
turn based on visual motion signals alone, which
means that it translates the spike output of its
motion-sensitive visual neurons into a torque,
and this torque has a component roughly pro-
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portional to the time-dependent angular velocity (see [6]).
The torque signal is a continuous waveform that the fly syn-
thesizes based on discrete spike sequences in its sensory
neurons. We will illustrate three different decoding proce-
dures—the sliding window, the optimal linear causal filter,
and the optimal noncausal filter—regardless of whether the
computations involved seem biologically plausible. It is evi-
dent from the examples that the three procedures provide a
successful reconstruction, even though there are significant
differences among them.

Before we outline the details of the three reconstruction
schemes, we shall discuss the underlying idea, which is
based on the fact that in response to an increase in the ampli-
tude of a static stimulus, neurons increase their rate of spik-
ing. More precisely, the number of spikes in a fixed time
window following the onset of a static stimulus represents
the intensity of that stimulus. Therefore, the basic ingredient
of the scheme is a frequency-amplitude curve (see Fig. 8) of a
chosen spike-generating device (cell). Since the curve was
generated by stimulating the cell with constant signals, it has
a static character. We explore how good the reconstruction is
in the case of an arbitrary nonconstant signal (e.g., sine
wave). The on/off cell system has been stimulated by a sine
wave of a certain amplitude and frequency. A time window of
a suitably chosen width is then continuously slid over the
two spiky signals (on and off), and the number of spikes per
window is counted, yielding two time signals that represent
the frequency code of the sine wave. A simple inversion of the
frequency-amplitude curve is then used to get two amplitude
time signals. The reconstruction waveform is found by sub-
tracting the off signal from the on signal and is shown in Fig. 9
for a window width of 150 ms.

Let us now suppose that we want to reconstruct the
same signal as above using a linear filter. Moreover, we
wish to design an optimal filter in the sense that it
gives a minimal reconstruction error—i.e., we mini-
mize the following cost functional:

[ ]E s t s t dt
T

= −∫ ( ) $( )
2

0

,
(4)

where $( )s t is the reconstruction of the signal s t( ). The
signal s t( ) generates a sequence of spikes in the on and
off channels. The reconstruction $( )s t is obtained by
low-pass filtering the on and off responses and then tak-
ing the difference between the two filtered signals. Re-
stricting ourselves to a second-order linear filter with
impulse response given by h t kte t( ) = λ , where k is the
gain of the filter and λ is its pole, and assuming that the
spiky signals can be represented as a sequence of Dirac
functions, the reconstruction of signal s t( ) is given by

$( ) ( ) ( )( ) ( )s t k t t e t t ei
t t

i
j

t t

j

i j= − − −








− −∑ ∑λ λ ,

where i and j refer to spike indexes in the on and off units, re-
spectively. Minimizing the error E with respect to the param-
eters k and λ yields the reconstruction shown in Fig. 9. Note
that the linear filter possesses a causality property (i.e., it
does not anticipate the input signal).

When the spike trains are to be filtered using an optimum
filter, rather than a linear one, we represent the kernel of the
filter using a linear combination of a certain number of basis
functions

h t c tn n
n

( ) ( )= φ∑ ,

where φn t( ) are from a set of nonorthogonal basis functions
(chosen as Gaussian functions in this analysis). We generate
a set of 20 basis functions of the form φ = φ −n t t ndt( ) ( )0 for
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the filter kernel expansion and obtain the optimum set of co-
efficients cn that minimizes the error E defined by (4). The re-
constructed signal is shown in Fig. 9.

To summarize, all three decoding procedures have been
successfully applied and tested. The last two are optimal in
the sense that the parameters are obtained by minimizing a
certain cost functional (reconstruction error, in this case).
The second method assumes linearity and causality,
whereas the first and third methods do not.

Encoding and Decoding
Using a Population of Neurons
In the previous section, we have seen that an analog signal
can be decoded from the spike rate or activity of an on/off
pair of neurons. However, there is one important drawback
of the decoding procedure viewed in the context of an on/off
circuit. Namely, the decoding filter is good only for the input
it has been designed for (e.g., sine wave). There is no guar-
antee that the decoding procedure would succeed for an ar-
bitrary choice of input. To overcome this drawback, we
introduce the notion of a population of neurons, which can
be thought of as the generalization of the on and off cells
concept. A population of neurons could be created by hav-
ing an equal number of on and off cells with randomly cho-
sen biases. Each neuron within a population has its own
activity curve. These activities can be thought of as instan-
taneous firing rates of individual neurons and are similar in
nature to the frequency-amplitude curve shown in Fig. 8.
They can be computed from the spike signal, possibly by
low-pass filtering, as illustrated earlier. For an extensive dis-
cussion on encoding and decoding of analog signals using a
population of neurons, the reader is referred to [14]. The ac-
tivity curves for a population of neurons are shown in Fig.
10. For computational efficiency, these curves are approxi-
mated by piecewise linear functions.

To illustrate how a population of N cells is used to encode
an analog signalu t( ), we assume that the activity function of
the ith cell is given by

[ ]a u ui i i( ) = +
+

α β , (5)

where [ ] + stands for a rectification operation. The main
point of this discussion is that the activity functions a u ti( ( ))
as an ensemble can be used to estimate u t( ) as follows:

$( ) ( ( ))u t X a u ti i
i

N

=
=
∑

1

.
(6)

The weights Xi are calculated by assuming that the function
u t( ) is constant and takes values in the interval [ , ]min maxu u
and by minimizing the error function defined as

[ ]E u u u du
u

u

= −∫ $( )
min

max
2

η

,

where ηis an additive zero mean noise with variance σ2. The
symbol ⋅ η

stands for an average over noise η, which is in-
corporated in the model via

[ ]$( ) ( )u u X a ui i i
i

N

= +
=
∑ η

1

.

The presence of noise in the activities of individual neurons
implies that there is an inherent randomness in the popula-
tion of neurons. For sources of noise within a single neuron,
the reader is referred to [6]. Once the weights are learned,
they are to be kept fixed, and (5) and (6) provide a mecha-
nism for encoding and decoding u t( ) in terms of a popula-
tion of activity variables a ti( ) or a u ti( ( )).

The procedure described above is illustrated by consid-
ering an example where we choose a set of 20 neurons with a
random set of activity profiles. By considering a sequence of
constant input signals, we compute the optimal weights Xi.
The network is tested for a sinusoidal input signal, and the
reconstruction is obtained using the decoding formula (6).
The results are shown in Fig. 11.

Note that the procedure outlined above can be generalized.
Namely, it is possible to extend the concept of decoding from a
scalar variable u t( ) to an arbitrary function of that variable
f u t( ( )).Consistentwith(6), thedecodingrulecanbewrittenas

$( ( )) ( ( ))f u t X a u ti i
i

N

=
=
∑

1

,
(7)

where the only difference between (6) and (7) is in the
weights Xi. They are now obtained by minimizing the error
function defined as

[ ]E f u f u du
u

u

= −∫ ( ) $( )
min

max 2

η

.
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Another generalization of the encoding/decoding process
would base the formulation on vectors rather than scalars.
There is abundant evidence that a population of neurons
can encode vectors. Roughly speaking, a neuron in a popula-
tion will fire if a vector has specific orientation, a concept
known as preferred direction (see [4]). The firing rate of a
neuron will decrease if the vector is rotated with respect to
the neuron’s preferred direction. For a vector X IRn∈ , the
generalized encoding rule becomes

[ ]a X Xi i i( ) ,= +
+

α β ,

whereα εi i iV= −/ ( )1 , β εi i= −1 1/ ( ), and the notation < ⋅ ⋅ >,
stands for inner product. The vectorV IRi

n∈ is the preferred
direction of the ith neuron, and the variable ε i provides a
bias. Likewise, the decoding rule is given by

$ ( )X X a Xi i
i

N

=
=
∑

1

,

and the weight vectors Xi are found by minimizing the error
functional described by

E X X a X dX dXi i i
i

N

n= ⋅⋅⋅ − + ⋅⋅⋅∫ ∑∫
=

[ ( ) ]η
η

1

2

1 .

As before, this procedure can be extended from vectors to
both scalar and vector functions of vectors.

To conclude this section, let us make several important re-
marks. First, note that only the activities of individual neurons
have been used, rather than the corresponding spike trains.
The transformation from a continuous input signal to the asso-
ciated activity has been implemented by a static curve, viz. the
activity curve. It follows that the two time-dependent dynami-
cal actions, the spike generation and the filtering of the spike
train, have been approximated as a static process. As a conse-
quence, the population of neurons used in this section has an
unrealistically large bandwidth. Clearly, adding the dynamics
of individual cells and obtaining the activities by filtering in
real time (see [14]) would impose some constraints in the fre-
quency response of the network (e.g., a sine wave of high fre-
quency would not be successfully reconstructed). Second, the
procedure of representing functions with a population of basis
functions, outlined above, may seem similar to using a layered
artificial neural network to approximate an arbitrary signal or
function. An important difference is that an artificial neural
network usually operates with a double-precision representa-
tion of the neural activities, while we emphasize that real neu-
rons are at best 3-bit devices with dynamics of their own.
However, real neurons have not been used in this expository
article, and we refer readers to [14] for a more rigorous treat-
ment of this problem with realistic (spiking) neurons. Finally,
the error function being minimized can be decomposed into
two parts, one due to the finite number of basis functions com-

ing out of a finite number of cells in the neural population and
the other due to the presence of noise. Both of these errors de-
crease monotonically as the number of basis functions (the
number of neurons) is increased.

Two-Link Robot Arm Control
Using a Neural Population
In this section, we show that the activity functions of a popu-
lation of neurons can not only encode an analog signal, as
shown earlier, but can also be used to provide an internal
representation of an ordinary differential equation govern-
ing the dynamics of the signal. Thus, the activity variables,
introduced in (5) and (6), provide a set of internal state vari-
ables with respect to which all dynamic equations are to be
encoded as internal activity dynamics. This point of view is il-
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Figure 11. Reconstruction of a sinusoid using a population of
20 neurons.
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Figure 12. Schematic of a two-link arm showing the elbow and
the shoulder angle.
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lustrated by considering the problem of controlling a two-link
robot arm using a population of neurons.

To give some biological motivation, we remark that move-
ments of a human arm in a horizontal plane are very stereotyped
in the sense that the corresponding paths are mainly straight
lines and the velocity profiles are bell-shaped functions. Using
standard tools from analytical mechanics, the dynamic model of
a two-link rigid body (see Fig. 12) is described as follows:

&

&

&

&
( ) ( )

x

x

x

x

x

x
T x C x

x

x

1

2

3

4

3

4

1 3









 =



















 = − −

4

1







 +











−T x s

e

( ) ,
τ
τ (8)

where T x( ) and C x( ) are matrices of coriolis and centripetal
terms and where x is given by
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The vector of external inputs [ ]u s e

T= τ τ contains the torque
pair associated with the shoulder and elbow. The torque pair is
found analytically using feedback linearization (see [15]). The
torque pair calculation that would cause the system to follow
the desired trajectory is given by
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To compute the pair of torques described by (9), it is necessary
to compute two sets of variables. The first consists of desired
angles, velocities, and accelerations θd , &θd , &&θd , φd , &φd , &&φd , and
the second consists of actual angles and angular velocities
θ θ, & , , &φ φ. The first set of variables is provided by a path planner
and the second set is provided by feedback, as shown in Fig. 13.
It is interesting to note that the desired variables could be gen-
erated as the response of an exogenous dynamical system con-
sisting of a timing circuit and a path planner.

The role of the timing circuit is to provide the bell-shaped ve-
locity profile, which is the driving signal for the path planner.

The timing circuit has a specific
start time and end time and is
driven by a set of external data
(initial and final position of the
arm). The fact that the
bell-shaped function can be
modeled as a periodic function
allows the timing circuit to be
designed as a second-order lin-
ear system, described by

&&u u+ =ω ω2 2. (10)

Note that the system (10) rep-
resents a linear oscillator with the frequency ω π= 2 /T,
whereT is the total time elapsed in reaching the final posi-
tion from the initial position. Both u and &u are to be en-
coded using different populations of neurons with their
encoding rules

a u u b u ui i i j j j( ) [ ] ( &) [ & ]= + = ++ +α β γ δ

and their corresponding reconstructions are given by

$( ) ( ) &$( &) ( &)u u X a u u u Y b ui i
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= =
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1 1
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The time derivative of a particular activity function at time
t can be approximated by

[ ]da t
dt

a t a tn
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τ
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where the activity of the nth neuron at time t + τ using the
encoding rule (5) simply becomes

[ ]a t u tn n n( ) ( )+ = + +
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τ α τ β . (13)
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it follows from (11) that
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It readily follows from (12), (13), and (15) that for the activ-
ities a tn( ) corresponding to u
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and likewise, for the activities b tm( ) corresponding to &u
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Figure 13. Block diagram showing planning and control of the arm movement. Note that the path
planner is equipped with a timing circuit.
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where the coupling weights are given by

ω α ω α ω γ ω γni n i nj n j mj m j mi mX Y Y( ) ( )int (ext) int (ext)= = = = Xi.

Note that (16), (17) form a coupled pair of differential equa-
tions defined using only the activity variables and essentially
solve the second-order differential equation (10). A sketch of
the solution to the activity dynamics for N M= = 40 is shown
in Fig. 14.

The reconstructions of u t( ) and &( )u t can be obtained us-
ing the decoding rule (11). However, it is not relevant to de-
code these variables at this point. We already know that they
represent analog signals that are solutions of (10). What is
relevant is to transmit the signalsu t( )further in the brain and
to combine them with other signals. This would lead to path
planning and eventual computation of the torque pairs de-
scribed by (9). Note that the decoding process will eventu-
ally take place at the level of generating motor commands, at
which point it is necessary to synthesize a continuous signal
(torque) from the corresponding quantities.

Once the activity function ofu is known, it serves as an in-
put to the path planner, which is described by a nonlinear dif-
ferential equation
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(18)

whereVm is the peak velocity of the arm, ri and rf are its initial
and final positions, δ is the total distance traveled by the end
point of the two-link arm in timeT, and M is the transformation
matrix from Cartesian to generalized coordinates. It is clear
that we should seek a solution to the differential equation (18)
in terms of the activity functions of &θd and &φd . For the purposes
of this article, we skip this procedure and solve (18) using a
numerical package. The reason for doing this is not a matter of
computational convenience, but rather a consequence of the
lack of generality of the discretization outlined in (12) and
(14). For the ordinary differential equation (18), such a
discretization leads to instability, a fact that requires further
investigation. Once the solution of (18) is computed, the activ-
ities of the corresponding variables are obtained by the en-
coding procedure already described. The activity functions of
& ,&& , & , &&θ θd d d dφ φ are obtained by implementing a neural
differentiation, details of which have been described in [16].

Finally, the activity functions corresponding to the shoul-
der and elbow torques are calculated from the algebraic
equation (9) using the activity profiles of the desired and ac-
tual variables. While the desired variables have been pro-

vided by the path planner in the framework described above,
the activity functions of the actual position and velocity are
provided directly by encoding the sensory data. An alterna-
tive approach to synthesizing the activity functions of the
torque components would be to use the procedure of a vec-
tor encoding. Generally, there is no unique way of solving the
encoding problem at this stage, as various methods that in-
clude encoding scalars, vectors, and scalar and vector func-
tions of scalars and vectors could be combined. For example,
both the desired and actual variables could be treated as a
single vector, viz. [ , & ,&& , , & , && ]θ θ θd d d d d dφ φ φ and [ , & , , &]θ θ φ φ , and the ac-
tivities of the torques can be represented as a nonlinear func-
tion of these two vectors. However, encoding a vector is
computationally expensive in general, and the required num-
ber of neurons grows with the dimension of the vector. This
fact needs further careful investigation.

Regardless of the method used to compute the activity
functions of τs and τe , the torques are obtained from these ac-
tivities using the optimal decoding rule, as described earlier.
The synthesized torques are then used as an input to the dy-

Figure 14. Solution to the activity dynamics (16), (17). (a)
represents the activities of u t( ), and (b) represents the activities of &( )u t .



namical system (8), and the simulation results
showing both desired and actual trajectories
are shown in Fig. 15.

To sum up, this section has illustrated how a
population of neurons can be used to solve a dif-
ferential equation and can be used to generate
the required control signals, particularly for
two-link robot arm manipulation. Drawbacks
outlined in this section include the stability of
the discretization procedure and a need for a
careful analysis connecting the dimension of
the variable to be encoded and the nature of the
nonlinear function. As in the previous section,
the dynamics of the spike generator and the
low-pass filter have been ignored.

Propagating Waves in Visual
Cortex of Freshwater Turtles
Having discussed the role of a population of
neurons in an encoding and decoding circuit
specifically designed for a control problem, we
now turn our attention to a population of neu-
rons naturally occurring in biology. A standard
objection in the neuroscience community is

that not all cells fire sufficiently many action potentials, sug-
gesting that there are ways the neurons encode analog sig-
nals other than rate coding. To respond to this objection, we
consider the visual cortex of a freshwater turtle (see Fig.
16). It has been experimentally shown that the cells of the
turtle visual cortex fire very few action potentials in re-
sponse to natural stimuli. Furthermore, studies using both
multiple-electrode recordings and voltage-sensitive dye
techniques demonstrate that visual stimuli produce waves
of depolarizing activity that propagate across the cortex.
The first evidence of such waves was reported by
Mazurskaya [17], [18] using extracellular recording meth-
ods to study responses evoked in the visual cortex by pre-
senting localized spots of light in the visual field of
paralyzed turtles. The existence of a wave has also been
demonstrated explicitly by Senseman [8], [19], who used
voltage-sensitive dyes to record the spatiotemporal pattern
of activity evoked by whole-field retinal flashes in the cortex
of an isolated eye-brain preparation. The voltage-sensitive
dye signal apparently corresponds to the spatially averaged
membrane potentials of local populations of cortical pyram-
idal cells. It was demonstrated that different stimuli in the vi-
sual space produced different waves in the visual cortex,
raising the possibility that the information about the stimu-
lus is encoded in the spatiotemporal dynamics of the corti-
cal response. Along the lines of our previous discussion, we
can ask the following question: How do we decode or extract
the information that is encoded in the propagating wave of
activity? To answer this question, we constructed a
large-scale model of turtle visual cortex and studied the re-
sponse of such a network to both stationary and moving
stimuli. We shall proceed by giving a brief description of the
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Figure 15. The desired and actual trajectories of the two-link system in a
horizontal plane.

Figure 16. Isolated turtle brain preparation. The shaded region
corresponds to the visual cortex (courtesy of the Ulinski lab at the
University of Chicago).

Figure 17. The distribution of particular types of cells in a large-
scale model of turtle visual cortex.



turtle visual cortex as well as the large-scale model that we
synthesized. For a detailed description of the cortex and
model, see [10] and [20].

The visual cortex of freshwater turtles contains three lay-
ers. The intermediate layer 2 contains principally pyramidal
(excitatory) cells with dendrites that extend into layers 1 and
3. Layer 1 (outer) and layer 3 (inner) contain mainly inhibi-
tory interneurons. Lateral geniculate afferents (LGNs) make
excitatory synapses upon the dendrites and somata of py-
ramidal cells in layer 2 and the den-
drites and somata of stellate cells in
layer 1. Our model consists of 700 py-
ramidal neurons (in layer 2), 40 inhibi-
tory stellate neurons (in layer 1), and 20
inhibitory horizontal neurons (in layer
3), as shown in Fig. 17. Each neuron is
represented by a multicompartment
model. Each compartment is modeled
by a standard membrane equation, and
the parameters of individual compart-
ments are constrained by experimental
data. The visual input to the model en-
ters through an array of 800 geniculate
fibers. Even though the total number of
cells in the model is much smaller than
the number of cells in the real cortex,
the ratio of particular types of cells is
preserved. The coordinates of individ-
ual neurons are drawn randomly, obey-
ing the densities of the cells that were
found experimentally. The cells make
different types of synaptic connec-
tions to their neighbors. The synaptic
delays are incorporated in the model
and are based on the conduction ve-
locities of depolarizing waves and the
distance between presynaptic and
postsynaptic neurons.

The localized stationary stimulus is
simulated by presentation of a square
current pulse to a set of adjacent
geniculate neurons. The family of sta-
tionary inputs is parametrized by the
position of the center of the stimulus
with respect to the geniculate com-
plex. For our simulation, 20 equidis-
tant positions of the stimulus were
chosen across the LGN. Since the
model has inherent randomness (the
exact positions of the neurons in the
three layers are drawn at random from
a distribution), the repeated presenta-
tions of a stimulus produce different
responses. For each of the 20 parame-
ter values a set of 50 cortex samples

has been generated. The response of the model to different
inputs has been recorded and saved. The term response is to
be understood as the membrane potential of the central
compartment (soma) of the individual pyramidal (layer 2)
neurons. Therefore, the response of the network to a spe-
cific stimulus can be viewed as a spatiotemporal signal
I x y t( , , ) (see Fig. 18). Given that each frame is 64 × 64 pixels,
and each movie has 201 frames, it is clear that the dimension
of I x y t( , , ) is rather high. Furthermore, we are interested in
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(a) (b)

(c) (d)

(e) (f)

Figure 18. Selected snapshots showing the origin and propagation of the wave of activity.
The activity is color coded; light blue indicates the network at the resting potential, red
indicates a high level of depolarization, and blue indicates a level of hyperpolarization. The
dark blue region does not contain any cells.



the comparison of two movies where the differences and
similarities between them have to be quantified. Thus, an ef-
ficient way for movie comparison has to be developed.

Principal components analysis was introduced inde-
pendently by many authors at different times. The method
is widely used in various disciplines such as image and sig-
nal processing, data compression, fluid dynamics, partial
differential equations, and weather prediction. Depending
on the context, the method is also known as KL decompo-
sition, proper orthogonal decomposition, Hotelling trans-
formation, and singular-value decomposition. The transfor-
mation itself is linear and represents a rotation of a
coordinate system, so that the data in the new coordinate
system is less correlated. Therefore, the main action of the
method is removing the redundancy from a data set, so that
the data can be represented in a low-dimensional subspace.
Instead of going deeper into the theory of principal compo-
nents analysis, we shall briefly outline the main results. For

a more rigorous mathematical treatment of the method, the
reader is referred to [21] and [22]. In the new coordinate sys-
tem, the movies can be viewed as an expansion

I x y t t M x yj j
j

m

( , , ) ( ) ( , )=
=

∑α
1

,
(19)

where M x yj( , ) represent so-called principal eigenvectors or
principal modes, andα j t( )are the time coefficients, obtained
by projecting the data set onto the jth principal mode.

The main advantage of the procedure is that the summa-
tion given by (19) can be significantly truncated (e.g., m = 3),
while the qualitative features of the movies are still pre-
served. Moreover, the eigenvectors M x yj( , ) represent a
so-called global basis and are common to all of the movies.

Thus, for m = 3, the third-order approximation of the kth
movie is given by

$ ( , , ) ( ) ( , ) ( ) ( , ) ( ) ( ,I x y t t M x y t M x y t M xk k k k= + +α α α1 1 2 2 3 3 y),

and the difference between two movies is captured in the
time coefficients. A typical phase plot of those coefficients
for three different movies is given by Fig. 19.

Because of the inherent randomness in the system, the
vector function [ ( ), ( ), ( )]α α α1 2 3t t t can be viewed as a ran-
dom process. Statistical analysis of a random process can
be facilitated if the process is parametrized using a second
KL decomposition. Analogous to the procedure outlined
above, the random process [ ( ), ( ), ( )]α α α1 2 3t t t can be ap-
proximated as

α
α
α

β ϕ β ϕ β ϕ
1

2

3

1 1 2 2 3 3

( )

( )

( )

( ) ( ) ( )

t

t

t

t t t
















= + + ,

where ϕ j t( ) are the basis vectors and β j are the coefficients
obtained by the orthogonal projection of the random vector
[ ( ), ( ), ( )]α α α1 2 3t t t on the basis vectors ϕ j t( ). Thus, the en-
tire spatiotemporal signal I x y t( , , ) can be represented as a
point [ , , ]β β β1 2 3 in the three-dimensional Euclidean space.
In Fig. 20, we show clusters of points indicating the repre-
sentation of the cortical response to stimuli presented at dif-
ferent locations in the visual space and for different samples
of the cortex. The points appear in a natural cluster, indicat-
ing that the turtle visual cortex can discriminate among var-
ious positions of the input stimuli.

The clusters can be used in building a statistical descrip-
tion of the cortical response given the position of a localized
stationary stimulus. In particular, conditional probability
density functions have been fit through the cluster data. We
then used standard Bayesian and maximum likelihood
methods for designing a detection algorithm that can pre-
dict the position (unknown parameter) of an input based on
the cortical response elicited by that input. The results indi-
cate that the position of an unknown light source can suc-
cessfully be detected based on a third-order KL expansion
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Figure 19. Spatiotemporal signal in the cortex can be
represented accurately using three eigenvectors. The phase plot of
the response of the cortex to three different stimuli.
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Figure 20. Clusters of points in the space of coefficients indicate
that the model of the visual cortex is able to discriminate among 20
locations of the input stimulus in the visual space.



of the cortical response. A similar conclusion holds for the
estimation of an unknown velocity parameter of a moving
stimulus (see [10] for details).

Summary and Conclusion
The main topic of this article is the role of a population of
neurons as opposed to a single neuron. Concrete results
were presented as to how neurons, as an ensemble, can
perform computations and can therefore be used to gener-
ate control signals. Likewise, motivated by concrete obser-
vations in the turtle cortex, we show that a population of
interacting neurons can sustain a wavelike activity that
can discriminate the geometric position of the incoming
stimulus in the visual space. The examples chosen in this
article are merely for illustration and reflect the research
interests of the authors. A neural population plays many
other nontrivial roles, many details of which are only now
being discovered.
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