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Modeling and Estimation Problems
In the Turtle Visual Cortex

Zoran Nenadic*, Bijoy K. Ghoshrellow, IEEE and Philip S. Ulinski

Abstract—The goal of this paper is to verify that position and ~ They used voltage-sensitive dye methods to show that presenta-
velocity of a spot of light incident on the retina of a turtle are  tjon of a visual stimulus to the retina of anvitro preparation of
encoded by the spatiotemporal dynamics of the cortical waves yhq yrtle eye and brain produces a wave of depolarization that

they generate. This conjecture is examined using a biophysically t isotropicall th tex. Th d .
realistic large-scale computational model of the visual cortex Propagales anisotropically across the cortex. fThey used a prin-

implemented with the software package, GENESIS. The cortical Cipal components method, the Karhunen-Loeve (KL) decom-
waves are recorded and analyzed using principal components position, to analyze the wave data. Individual waves could be
analysis and the position and velocity information from visual represented as a weighted sum of as few as three eigenvectors
space is mapped onto an abstract B-space, to be described, usingyich gre functions of the coordinates of the cortex. Interest-

the coefficients of the principal components expansion. The . | tati f diff. t visual stimuli h ts of
likely values of the position/velocity are estimated using standard N8y, Presentation ot difierent visual simuli, Such as spots o

statistical detection methods. light at different points in the visual space, produce waves that
Index Terms—Cortical wave, detection, principal components, have different representations in the three dimensional (3-D)
visual cortex. eigenspace. This raises the possibility that visual information

is coded in the spatiotemporal dynamics of the cortical waves.
Subsequent research work provided abundant evidence that the
traveling electrical waves were observed not only in turtle vi-
sual cortex [6], but also across olfactory, visual, and visuomotor
AMMALS have a cerebral cortex that embodies sewreas of cortex in a variety of species [7].

eral, topographically organized representations of visual The turtle visual cortex contains at least 11 morphologically
space. Extracellular recordings show that neurons in a restrictggkinct types of neurons, only some of which are well charac-
region of visual cort.ex are aptivated When a visual stimulus ﬂérized. These are two subtypes of pyramidal cells, the lateral
preseqted toa restricted region of the visual space, the C|aS_S§}¢H medial pyramidal cells, stellate cells, and horizontal cells.
receptive field of the neuron [1]. Neurons at adjacent poingsramidal cells have somata located in the intermediate layer
in the cortex are activated by stimuli presented at adjacent of the cortex and are predominantly excitatory. Stellate cells
gions of the visual space. Consequently, there is a continugii§e somata in the outer layer 1 and are inhibitory. Horizontal
but deformed map of the coordinates of visual space to the ¢@iis have somata in layer 3 and are also inhibitory. Pyramidal
ordinates of the cortex. Extracellular recordings from the visugh|is and stellate cells receive direct projections from the
cortex of freshwater turtles produced a different result [2]. Negorsal lateral geniculate complex (LGN) [8]. Geniculate axons
rons at each cortical locus are activated by visual stimuli prgpersect lateral and medial pyramidal cells in characteristic
sented at every point in the binocular visual space, although ﬁ_ﬁ‘&terns that will be described later [9]. These synapses have
latency and shape of the response waveforms vary as the siéfherimentally been determined as themino-3 hydroxy-5
ulus is presented at different qu in the visual space. Thls SUSiethyl-4 isoxazole proprionic acid (AMPA) subtype of gluta-
gests that there may not be a simple map of the coordinatesypite receptor [10]. Pyramidal cells make projections to stellate
the visual space to the coordinates of the visual cortex in tWg||s, horizontal cells and other pyramidal cells. Their synapses
tles. Position in the visual space is either not representedjR-ess hoth AMPA and N-methyl-D-aspartate receptors [10].
the visual cortex, or is represented in some form other than gewise, stellate cells and horizontal cells make feedback
retinotopic map. Experiments conducted by Senseman [3] gfi@jections to pyramidal cells. These synapses access both
Senseman and Robbins [4], [5] have supported this viewpoi§aBA , and GABAs receptors. Finally, stellate cells project
back to stellate cells via synapses that access GABAd
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Fig. 1. (left) Three layers of turtle visual cortex projected onto a single plane. Different colors indicate different cell types. The total noatbealdfells is
750 and the relative densities of cells are preserved with respect to experimental data. The crossbar indicates the position of rostral (R)latatalgL{Cand
medial (M) part of the cortex. (right) Compartmental structure of lateral, medial, stellate, and horizontal cells. The spherical compartesamssemata and
the cylindrical compartments are parts of dendrites. Axons are modeled as delays and are not shown in the figure.

use standard statistical methods [Bayesian and maximume-likge known in detail [9], [16]. There is some information on the
lihood (ML)] to estimate the parameters of unknown stimulbasic shape and dimensions of the axonal arbors of stellate and
based on the cortical response they elicit. The results sugdastizontal cells from Golgi preparations. This data was used to
that the cortical wave indeed carries information about the posstimate spheres of influence between stellate and horizontal
tion and velocity of the stimulus. However, an important caveatlls and their postsynaptic targets.
is that we do not yet know if the turtle uses this information in The visual cortex of freshwater turtles contains three layers.
the cortical wave. The intermediate layer 2 contains principally pyramidal cells
with dendrites that extend into layers 1 and 3. The outer layer 1
and inner layer 3 contain mainly inhibitory interneurons. Genic-
Il. DESCRIPTION OF THEMODEL ulate afferents make excitatory synapses upon the dendrites and
somata of pyramidal cells and the dendrites and somata of layer
In this section, we will give a brief description of thel neurons. Our model assumes the three layers are projected
large-scale model of turtle visual cortex. Modeling, in generabnto a single plane (see Fig. 1). Each neuron is represented by
is an evolutionary process and involves numerous parametarsnulti compartmental model based on the anatomy of pyra-
some of which are obtained by physiological measurememsdal neurons and inhibitory interneurons. Each compartment
and some of which are simply tuned in the modeling process.modeled by a standard membrane equation and implemented
Comprehensive description of the computational model goesGENESIS [17]. The somata are modeled as spherical com-
beyond the scope of this paper and can be found in [12]. Briefgartments and the dendrites are modeled as cylindrical compart-
the dimensions of the somata and dendrites of individual typegents. The axons are not modeled as compartments but as delay
of neurons were based on measurements from Golgi imprdiges. For a detailed description of compartmental models see
nations of turtle visual cortex [13]. Biophysical parameterd8]. In Fig. 1, we show the compartmental structure of cortical
for each cell type were measured with vivo intracellular interneurons. Maps of the spatial distribution of neurons in each
recording methods [14], [15]. The physiology of each type af the three layers of the cortex were constructed from coronal
synapse included in the model is known framvitro intra- sections through visual cortex of a turtle. The maps were di-
cellular recording experiments [10]. The kinetics of individualided into an 8x 56 array of rectangular areas, each measuring
types of voltage-gated channels have not been characteri28d 190;:m. Experimental data were not available for each of
with voltage-clamp methods in turtle visual cortex, so théhe 8x 56 rectangular boxes and were interpolated at locations
parameters needed to implement Hodgkin—Huxley-like kinetichere measurements were not available. An algorithm was de-
schemes were obtained from work on mammalian cortex ameloped in MATLAB that constructed an array of neurons in
constrained by comparing the firing patterns of model cells gach layer that preserved the ratios of cells between layers in
real cells following intracellular current injections. The geomthe real cortex. The cells are distributed between®6 blocks
etry of the geniculocortical and intracortical interconnectioreccording to the actual density information. Within each block,
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Fig. 2. Linear arrangement of geniculate neurons. The somata are shown as

boxes and the corresponding axons are shown as lines. Only 13 out of 801 LGN . . L .

neurons are shown for clarity. Fig.4. Convex hull of polygon of cell coordinates. Only pixels lying inside this
contour will be assigned a real value, based on triangular interpolation. Dashed
lines describe the boundaries of the subimages.

algorithm, the total number of neurons can not be guaranteed
a priori. However, the proposed model contains nominally 750
neurons with the actual numbers varying slightly from simula-
tion to simulation. Biophysical data are not available for neurons
in the dorsal LGN of turtles, so geniculate neurons were mod-
eled as single isopotential compartments with a spike generating
mechanism. Geniculate axons are modeled as delay lines that
extend across the cortex from lateral to medial. The number of
geniculate neurons in the modellis= 801. The LGN neurons
. are linearly arranged along the lateral edge of the cortex with
LGNindex 2V % Time (ms) axons extending to the cortex (Fig. 2). The axons of the most
rostral and most caudal LGN neurons in the array extend to the
caudal and rostral poles of the cortex, respectively. The other af-
ferents are evenly spaced between these two axons. Geniculate
afferents enter the cortex at its lateral edge, cross over each other
and then run in relatively straight lines from lateral to medial
cortex. The rostrocaudal axis of the geniculate is consequently
mapped along the caudorostral axis of the cortex. The geom-
etry of the geniculate afferents and their spatial distribution are
based on anatomical data from [9]. The number of synaptic sites
(varicosities) assigned to each geniculate afferent is calculated
LGN index o Time (ms) by multiplying the length of the axon by the average number
of varicosities per 10Q:m of axon length. The spatial posi-
Fig 3. (top) _Siénulaéic?n of a_quallized stationary SltimulUS- ? QIFO_UIO ofions of the individual varicosities (the total of approximately
e e b % 44 300 varicosities has been used) are assigned to axons using
and amplitude of 0.2 nA. The family of stationary stimuli is parameterized 1€ distribution of varicosities along the lengths of real axons
the I_ocatiqn of the center, of t_he stimulus. (bottom) Simulatipn ofa_ stimulus[9]. The distribution is strongly skewed to the left, indicating a
e s vt o o S s Ll 7112 Bfeater number of varicosites n the lateral than in the medial
family of moving stimuli is parameterized by the delay of one square pulgart of the visual cortex. For cortico—cortical connections, we
with respect to its neighbor (slope of the dashed line). constructed spheres of influence. Therefore, a cortical neuron
will be connected to any other cell in the cortex within its sphere
of influence. The synaptic strengths were higher in the center of
the cell coordinates are chosen randomly from a uniform digfluence and were linearly reduced with the distance. Propa-
tribution, independently for every block. This algorithm is congation times between neurons are calculated using the distance
venient as it can generate as many different models as needdyween a pair of neurons and conduction velocities. The con-
while retaining the information about the relative densities afuction velocity for geniculate afferents in turtle visual cortex
cells in the visual cortex of a real turtle. Most of our modelbas been measured at 0.18 m/s [13]. Cortico—cortical connec-
have approximately 680 pyramidal cells, 50 stellate cells, atidns are given conduction velocities of 0.05 m/s, consistent with
20 horizontal cells (Fig. 1). Due to the nature of the distributiomeasurements of propagating waves in the turtle visual cortex
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Fig.5. Selected snapshots from the movies corresponding to different stimuli.
Time is measured with respect to the onset of a stimulus, and the membrane
potentials of individual cells (pixels) are color coded (the values near the color
bars are in millivolts). Lateral and medial pyramidal cells have different values
of resting membrane potentials, hence the difference in color at time 0 ms. The
borders of darker color in each snapshot indicate that these pixels lie outside
the convex hull of the polygon of cell coordinates. (top) Snapshots from the
movie corresponding to one of the inputs from the family of stationary localized REET
stimuli. (bottom) Snapshots from the movie corresponding to one of the inputs

from the family of moving stimuli.
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[3], and the conduction velocities for axons of inhibitory in-
terneurons in rat cortex [19].

I1l. SIMULATION OF STATIONARY AND MOVING STIMULI

The stationary stimulus has been simulated by presenting a
50 ms square current pulse to a set of adjacent geniculate neu-
rons (see Fig. 3). For the purpose of our simulation, 20 equidis-
tant positions of the stimuli have been chosen across the LGN.
The stimuli are labeled from 1 to 20, each input being parame-

terized by the position of the center of the square pulseith Fig.6. (top)C ) . ionof ental and model dat

: ig.6. (top) Comparison of wave propagation of experimental and model data.
_rESpeCt to the LGN neurons. Therefonazput 1 (mOSt caudal Both waves are induced by localized stationary stimuli, presenting a spot of light
input) corresponds to a square pulse centered at the LGN neur@perimental setup and injecting localized square current pulses in the model.
201 (n. = 201), andinput 20(most rostral input) correspondsThe activities of individual neurons are color coded, as indicated by the color bar
to a square pulse centered at the LGN neuron ﬁQlZ( 601) at bottom. (bottom) Location and nomenclature of cortical structures referenced

h her i I \v distri h ' in this paper: lateral visual cortex (M@, medial visual cortex (V& ), and

The other inputs are linearly distributed between the tWo €xsrsomedial cortex (DM). Figure courtesy of David M. Senseman.
trema. The moving stimulus is assumed to be sweeping across
the geniculate complex, from caudal to rostral, and it consistdich have been delayed with respect to each other (see Fig. 3).

of a sequence of square pulses, equal in amplitude and duratibime delay is varied linearly between two preselected values. A
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set of 18 equally spaced delay parameters has been choserchkzed) retinal light flashes where the stimuli in the model are
tween the above maximum and minimum values. The velocityjected square current pulses.
of the slowest signal is therefore calculated at 0.006 imfsug Let(x, ¥, ¢) denote the spatiotemporal signal of response of
20), and the velocity of the fastest signal is 0.03 nifp(t 1), the model to different stimuli. Thef(z, y, t) can be viewed as
where these values do not represent the velocities of moviagollection of movie frames (snapshots). Given that every frame
stimuli in visual space but in the space of LGN. The other insn x n pixels, and every movie has frames, itis clear that the
puts are linearly distributed between the fastest and slowest. Teension of («, ¥, ¢) could be very highw{ x n x m). Further-
overall simulation time is set to 200 ms, as we would like to olmore, a comparison of two different responses (movies) is of in-
serve the behavior of the system in the steady state. While ttésest, as we would like to quantify the differences and similarities
calibration in the local LGN coordinate system is useful angetweenthem. Therefore, an efficient way for movie comparison
makes simulations easily tractable, it should not be in any whgs to be found. We now proceed to describe a principal-compo-
associated with the position and velocity in the visual space, @ents-based technique for such a comparison. This method was
the model has not been calibrated to units of visual arc. also used earlier by Senseman and Robbins for the analysis of the
Since the exact locations of individual cells are randomizedata recorded from the cortex of areal turtle [4], [5].
we generated 50 different cortical networks using the algorithmPCA was introduced independently by many authors at dif-
described earlier. By running 20 stimuli on 50 different neferent times. The method is widely used in various disciplines
works with the same initial conditions, we have obtained a sgich as image and signal processing, data compression, fluid
of 1000 simulations for both stationary and moving stimuli. Thedynamics, partial differential equations, weather prediction, etc.
simulation results consisting of membrane potentials of ind1]. In image processing, the method is used for removing a
vidual neurons have been recorded and saved in a data file. Exg@gundancy (decorrelating pixels) from images [22]. The trans-
though the data for all neurons are available, we are primarfgrmation itself is linear, and represents a rotation of a coordi-
concerned with the pyramidal neurons. The responses of pyfate system, so that neighboring pixels in the new coordinate
midal neurons have been visualized as movies. The data haygtem are less correlated. Moreover, the rotation proposed by
been spatially resampled from a nonuniform grid of neuron ce method is optimal as it leads to a complete removal of the
ordinates to an artificially constructedx n uniform grid. The correlation from neighboring pixels, which is equivalent to diag-
program uses triangle-based linear interpolation, although oti#éalizing the image correlation matrix. Consequently, the image
methods are also available (triangle-based cubic interpolati§&n be approximated in a low-dimensional subspace, using only
nearest neighbor interpolation, etc.). The choice of interpofg€lected basis vectors, also called principal eigenvectors. In the
tion algorithm did not affect the results. Triangle-based algél€ory of partial differential equations, the method is useful for
rithm constructs a triangular grid of scattered data points (cé[ding & separable approximation to the solution of a partial
coordinates), and assign a value to pixels that are in interfdfférential equation, which is optimal in the sense that it max-
of the triangles. The out of range data cannot be assigned 4R{7eS the kinetic energy cost functional [23]. Depending on
real number value and those pixels are assigned NaNther the context, the method goes by the names: KL decomposition,
words, the algorithm cannot extrapolate and the pixels lying ol-OPer orthogonal decomposition, Hotelling decomposition and
side the convex hull of polygon of cell coordinates are all aSingular value decomposition. We shall refer to it as KL de-
signed the value of NaN. The convex hull of the polygon of Ceﬁomposmon. In the KL decomposition, anx n pixel frame

i ‘ izen2 -
coordinates for one of 50 cortical samples is shown in Fig. written as a vectowy;, of sizen” x 1. Therefore, thdith spa

The value of membrane potential at each pixel was color codigfeMPoral signal can be viewed as a collection of frames
and the spikes were not removed in the process. Selected snap- [’“(x, y, t) = {u’f, u’g‘, s Ufﬁ}

shots from movies corresponding to both stationary and mov
stimuli are shown in Fig. 5. The comparison of experimental a
model waves is shown in Fig. 6. The purpose of this figure is

show that two waves have similar features, they originate frofhthen calculated as

in
I)ﬁt(]gwerem is the total number ofzfrarznes (time samples). The av-
fJage correlation matrig; € R™ > for a family of N movies

the same point in the cortex (rostrolateral edge) and they propa- 1 XL s T
gate in both rostrocaudal and mediolateral directions. It should Gr=+— SO ) 1)
be noted however, that the regions of the cortex observed by k=1 i=1

experiment and model are not quite identical. Senseman [20je matrixC; is symmetric and positive semidefinite, so its
records from dorsomedial cortex (DM) and the medial part eigenvalues are all real and nonnegative and the cgrresponding
the visual cortex (V&;), whereas our model is confined to theeigenvectors are orthonormal and form a basi®®. This
medial and lateral parts of the visual cortex, (¢¥¥Cand (VG.) basis will be referred to agobal basis The eigenvectors corre-
respectively. Furthermore, the nature of the signals represengpanding to the largesgteigenvalues of’; are called the prin-

by Fig. 6 is different for experimental and model generatetipal eigenvectors (modes) and thi@-order successive recon-
data. Experiments use voltage-sensitive dye signals, which st@iction of the spatiotemporal sign#i(x, y, t) is given by

proportional to the membrane potentials of individual neurons p
and do not completely resolve individual action potentials. The Mo,y t) = ol (OM;(z, ) 2)
model generates membrane potentials which include action po- i=1

tentials. Finally, the stimuli in the experimental setup are (lo- L .
Y P P ( whereM,(z, y) € R™ ! are the principal modes, the time co-

IThe IEEE arithmetic representation for not-a-number (NaN). efficientsa; (t) are given by (t) = (I¥(z, y, t), M;(x, v)),
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F'g. 9. (top) Presentation of a localized stationary stimulus at different

ositions (three for experiment and five for model) in the visual space. (middle)
Corresponding phase trajectories in A-space. (bottom) Clusters of points in
B-space as a result of repeated trials. Figure courtesy of David M. Senseman.

Fig. 7. (left) Three spatial principal modes corresponding to stational
data global basis. Modes are displayed as images: {t6f)r, y), (middle)
M;(z, y), and (bottom@\5(x, v). (right) Equivalent picture for moving data
global basis. Both bases are calculated based on 1000 movies.

and(-, -} stands for the standard inner product notation. The
time coefficients of the KL expansion (2) are uncorrelated, i.e.,
no further compression (decorrelating) is possible. Furthermore,
the average kinetic energy of thth-order approximation of the
movie k is given by

Bo=2 3 ) b

This result is straightforward and follows from the definition
3 T of the average kinetic energy, (2), and the fact that the principal
; R modes are orthonormal. Thus, the fraction of the average kinetic
o ! energy of thekth movie captured by itgth-order approximation

S < s is given by

It has been observed in the analysis that the first few principal
components capture most of the energy content of a movie.
In particular,p = 3 implies x; > 0.99, indicating that the
third-order approximation carries over 99% of the signal energy.
Originally, movie frames are resampled to aX6464 resolution
: (n = 64). However, the portions of the snapshots corresponding
x Skl .
- to out of range data have to be excluded from the analysis. Re-
i T call that these pixels were assigned NaN values, and as such
; ' could not be incorporated in the analysis. These pixels could
AU Lk be assigned some value other than NaN, but such an action
T a3 -3 would correlate the data additionally, and the high degree of
compression would not be a genuine wave phenomenon, but
Fig. 8. (top) Phase trajectories in A-space corresponding to the response@ t§Onsequence of this action. Therefore, we take a squared
three stationary stimuli. (bottom) Equivalent picture for three moving stimuli.subimage out of each snapshot and perform the analysis on
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the subimages. The subimages are at4@0 resolution and results. It should be noted that the points from experimental data
the area of the cortex that they cover is shown in Fig. 4. Thése not as clustered as the model data. This could be a conse-
area contains on average 350 pyramidal neurons out of 68§0ence of a considerable level of noise in the experiments.
Three principal moded/; (x, y), Ma(z, y), and Ms(z, y) of

the global basis of both stationary and moving data are showm/. EsTiMATION WITH PRINCIPAL COMPONENTSANALYSIS

in Fig. 7. These modes are found from (1) far = 1000, In Section Il h how the visual b
m = 201, and n = 40. Therefore, the difference between n section fil, we have seen now the visual space can be

two movies will be visible in their time coefficiente; (), mapped into a 3-D space of coefﬁcie‘nts viathg principal com-

as(t), and as(t). Said equivalently, theith spatiotemporal ponents representation of the associated spatiotemporal signal
signa,I [*(z, y, 1) is represented b); a phase trajectory in igthe model cortex. The B-space construction has been detailed
3-D space ’of ’time coefficients, and this space will be referr parately for the stationary and moving case. In this section, we
to as A-space. In Fig. 8, we show the phase portraits (p|o°'t ow how a straightforward Bayesian detection algorithm can be

of the time coefficients) corresponding to the responses ed to estimate the position of an unknown spot of light or the
three stationary and three moving stimuli. velocity of an unknown moving spot of light in the visual space.

Because the positions of neurons in the model cortex areS discussed earlier, a set of 1000 simulations for both
randomized with each new simulation, the vector functioii€ Stationary and moving cases is considered. Each of 1000
[a1(t) ao(t) as(t)] can be viewed as a random proces&novies is rep.resented by a-pomt in B-spgce. The B-space
Statistical analysis of a random process can be facilitated if tAi2t Of the points[f, j, fs] is shown in Fig. 10 for both
process is further parameterized using a second KL decopigtionary and moving case. The points in B-space elicited

position. As outlined above, we form an average correlatidy the same stimulus appear clustered, with some of the
matrix C, € R¥"x3m ag clusters overlapping. This indicates that certain stimuli are

perceived with ambiguity, e.ginput 3 input 4, andinput 5in
1 X the stationary case andput 1Q input 11 andinput 12in the
Cr= Z [ak(t) ob(t) of(®)]" moving case (see Fig. 10). In the eventual process of detection,
k=1 it would not be clear to which clusters these points belong.
x[af(t) of(t) o5(®)] (3) It seems that the vectors in B-space, even though 3-D, can
be discriminated based d@., 3] pairs only. Assuming the
where points within clusters are normally distributed, the conditional
density functionf(/3., fs|ix) of point [32, fs] given inputiy
can analytically be found as shown in Fig. 11. Given a response
to an unknown stationary(moving) inptit, the representation
of the response is found as a vecisf, 35, 5] in B-space.
Using Bayes rule, the conditional probability density

af(t) = [af(l), af(Z), . af(m)] (i=1,2 3).

The qth-order successive approximation of théh random
vector[a¥(t) k() ok(t)]is given by

q

[af() a5r) ak()]=3" B ds(t) ) Pl 8) = L8 B8lin) i) 5)
=t /2 f(B3, B5liy) £i5)
whereg.(t), ..., ¢,(t) are the eigenvectors corresponding to =
the largesty eigenvalues of the matrig€', written in the form can be calculated for evety= 1, ..., 20, and where the prob-

1x3m ratherthar3m x 1. The coeﬁicientﬁj’?‘ € Rarefound by ability density function of the discrete random variablés un-
orthogonal projection of a random process tojfthecigenvector derstood as a simple probability. The ML is then used to deter-
mine the most likely position (velocity) of the unknown input
B = ([ad(t) ab(t) af(B)], 6;(1)).

max f(ixl33, 43). ()
Combining results after the double data compression leads to a
convenient representation of thén spatiotemporal signal by alt is interesting to note that the conditiof(i;|32, #3) =

point inR?, i.e., f(ix|B2, Bs) for somej, k = 1, ..., 20 andj # k defines
N - . a curve of constant likelihood ratio, and could be used to
I"(z, y, t) — [B1, Bs, -, Byl partiton a decision space [24]. This might be useful for

. . L avoiding an explicit calculation every time a new estimation
In our analysis, we use a third-order approximatipr=(3) and s 14 pe performed, as the sample associated with an unknown

each data setis represented by a pointin 3-D space, convenieggyameter would fall in one of the existing ML bins. Assuming
denoted B-space. Because of the randomness in the model, Qfg;a| prior probabilities of each of the 20 inputs, the ML bin of
sentation of the same stimulus does not produce the samey “inputiy, is simply given by

sponse in general. In particular, the same stimulus applied to

several randomly generated cortical networks would produc,, = {(3,, fs): f(B2, Balix) > f(Pa, Baliy), Vi # k}.

as many points in B-space as the number of networks. These

points appear clustered in B-space, and these clusters movélie illustration of decision space for both stationary and moving
B-space as the parameters of the stimulus (e.g., position or s8muli is shown in Fig. 12. To test our estimation algorithm,
locity) change. The illustration of this phenomenon is shown ime generated a set of 20 inputs for both stationary and moving
Fig. 9, where the model data is compared with the experimentalses. These inputs are the same as the ones used to construct
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Fig. 10. Clusters of points in B-space corresponding to different (a) stationary stimuli and (b) moving stimuli. Each cluster contains 50 paststas a r
applying the same stimulus to 50 different cortical samples. The numbers near the clusters indicate the label of the input responsible foethioEkeck&
versions of the plots are shown for clarity.
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Fig. 11. (top) Conditional probability density functions given stationary stimuli. (bottom) Conditional probability density functions giveg stiowuli.

By

Fig. 12. (a) Decision space corresponding to stationary stimuli. (b) Decision space corresponding to moving stimuli. The regions of differeprestnrt the

bins of ML given a specific input. The numbers associated with each likelihood bin denote the label of the most likely input for that bin. Notekgldtabd bins

for input 9andinput 10are not connected in the stationary case. The bin colors are matching the colors of clusters in Fig. 10. White dots represent the observations
obtained as a response to a set of 20 stimuli.
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the conditional probability density functions, but they are ap- TABLE |

pIied to a randomly generated cortical network not belonging LIKELIHOODS OF FALSELY DETECTED INPUTS CALCULATED FROM (5)
. . . FOR MOVING CASE ARE SHOWN BELOW. THE BOXED VALUES

to the existing set of 50 networks used to build statistics (clus- ARE THOSE OFML FOR A GIVEN INPUT

ters). The corresponding waves have been recorded and decom-

posed using the procedure described in the previous sections.  Bin \4Inp‘“ - 24559 00?)00 00‘300 00:) 11
This results in a set of 20 points in B-space, where each point . 0'7441 0'0100 0'0000 ohoogg 8'8888
is presumably coming from one of the 20 clusters whose sta- 2 - - ' ' :
o g : . 6 0.0000 | 0.9852 | 0.0165 | 0.0000 | 0.0000
tistical descriptions have already been found. Depending on its
N - : - 7 0.0000 | 0.0048 | 0.9688 | 0.1774 | 0.0000
position in the decision space, each point has been assigned to
ticular likelihood bi dth int “od b 8 0.0000 | 0.0000 | 0.0147 | 0.7896 | 0.0000
a particular likelihood bin, and these points are represented by 9 0.0000 | 0.0000 | 0.0000 [0.03301 0.0000
the white dots in Fig. 12. It is evident from Fig. 12 that most of 10 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0116
the points are found to belong to the bin corresponding to the 11 0.0000 | 0.0006 | 0.0600 | 0.0000 | 0.3524
input which indeed elicited the response. The results are some- 12 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5818
what better in the stationary case, as we found only two falsely 13 0.0000 1 0.0000 | 0.0000 | 0.0000 | 0.0539
14 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0003

detected parameters (see Fig. ligjut 18is found in bin 19
and inputinput 19is found in bin 20 together with the correctly
detectednput 2Q In the moving case, we found several inputs
that are falsely detected. An explicit calculation for falsely de- TABLE I

. . LIKELIHOODS OF PREVIOUSLY FALSELY DETECTED INPUTS CALCULATED
tected inputs has been performed using (5) and (6) and the rerzoy (7) For MovING CASE. ALL INPUTS ARE CORRECTLY DETECTED
sults are summarized in Table I. For example, the response to AS INDICATED BY THE VALUES OF MLs
input 4is found to most likely belong to bin 5, which is to say

thatinput 4is falsely detected aaput Ssince there is a 0.7441 Bm\;nput 0'0%00 0.0?)00 00?)00 0‘03)00 0.3300
likelihood that such response is elicitedibput 5 At this point 4 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
we shall explain the source of errors in the estimation algorithm 5 0.0000 1 0.9987 | 0.0000 | 0.0000 | 0.0000
proposed. Clearly, the accuracy of estimation will be determined 6 0.0000 | 0.0013 1 0.9983 | 0.0000 | 0.0000
by the level of noise in the system. Recall that the network of the 7 0.0000 | 0.0048 | 0.0017 | 1.0000 | 0.0000
neurons obeys a certain density law only as a collection. That is, 8 0.0000 | 0.0000 | 0.0000 { 0.0000 | 0.0000
the exact positions of individual neurons are randomized within 9 0.0000 | 0.0000 | 0.0000 | 0.6000 | 0.0000
each rectangular block. Secondly, we have discretized our deci- 1(1) 8'8388 8'8888 8‘8888 8'8888 g'ggi’;
sion space into a set of 20 inputs, resulting in a set of 20 clusters 12 0.0000 | 0.0000 | 0.0000 | 0.0000 [0.0025"

which are frequently overlapping. Consequently, the Gaussian
blobs within Fig. 11 are intersecting along the curves of rel-
atively high likelihood, which may result in ambiguity during V. CONCLUSION
estimation and can lead to a false detection. Finally, the esti-

mation method is based on 2-D conditional probability density The main contribution of this paper is twofold. First, we were
functions, even though the vectors in the B-space are 3-D. Taisle to synthesize a large-scale model of the turtle visual cortex
only reason we chose estimation in two dimensions is that tkeowing the biophysical parameters of the individual cells and

points were seemingly separable based/n 3s] pairs only.

basic aspects of the geometry of interconnections between neu-

This further led to a simple picture, the probability density fungons. Without going into details of the modeling process, we

tions could be visualized and the decision spaces were simgl@e a comprehensive description of the model with a special
regions in a plane. It is expected that taking into account tRenphasis on the properties of the actual visual cortex that are
third Coordinatdjl would improve the detection algorithm. Thepreserved in the model. Our model has shown the basic qua|_

3-D counterpart of (5) is given by

3 3%, B lin) fin
FEnIBE, B, B3 = QOf(/l,/Q,/glLk)f(Lk) -

Zl JBL, 5, 85 45) £ (45)
i=

and the most likely value of the unknown parameter is found

max FGwl BT, Bs, 53).

itative features of the turtle visual cortex such as the produc-
tion of the cortical wave in response to stationary and moving
stimuli. Similar qualitative behavior has been observed exper-
imentally using voltage-sensitive dye techniques. Our second
contribution is to demonstrate that the spatiotemporal dynamics
of the cortical waves provide a means to map the visual space

nto B-space that encodes the position and velocity parameters
of a spot of light in the visual space. Assuming Gaussian condi-
tional density functions and using ML estimate, we are able to
detect the unknown parameters in the visual space.

As a final remark, the results in this paper require several

The MLs for the moving case based on 3-D algorithm are givé@mments. The firstis that the current version of model includes
in Table 1. The likelihoods are shown only for the parametegnly the visual cortex. Neurons in the dorsal LGN are included
that were falsely detected using 2-D algorithm (Table 1). It ienly as a series of one compartment models arranged along
clear that the 3-D algorithm has a better performance, resultiadine. They do not adequately represent the two-dimensional
in no falsely detected inputs. A similar result has been obtainstiucture of the retinal projection to the dorsal lateral genicu-

for the stationary case.

late. Retinal ganglion cells in turtles have complex receptive
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field properties that are not included in the model. It is not sur{15] J.G. Mancillaand P. Ulinski, “Role of gabaa-mediated inhibition in con-

prISIng, then, that the waves in our simulations are not as com- trolllng the responses of I’egular $p|k|ng cells in turtle visual cortéis”
L .. Neurosci, vol. 18, pp. 9—24, 2001.
191 ) . E. Cosans and P. Ulinski, “Spatial organization of axons in turtle
plex as those seén vivo by Prechtlet al.[6]. Nonetheless, itis 161 ¢ E ¢ d P. Ulinski. “Spatial ization of in turtl

important to note that KL decomposition has been successfully  visual cortex: Intralamellar and interlamellar projectiond,Comput.

applied toin vivo results by Senseman and Robbins [25], so it __Neurol, vol. 296, pp. 548-558, 1990. .
S . . . t[17] J. M. Bower and D. BeemaiThe Book of Genesis Santa Clara, CA:
is likely that our approach to analyzing the information conten TELOS. 1998.

of cortical waves can be applied o vivo as well asin vitro [18] Z.Nenadic, B. K. Ghosh, and P. S. Ulinski, “Propagating waves in visual

results. Second, KL decomposrth” as presented in this paper cortex: A large-scale model of turtle visual cortebnt. J. Math. Comput.
Modeling 2002, to be published.

uses the concept of global b.ases In space and time, Obta'ne.d FM] P. A. Salin and D. A. Prince, “Electrophysiological mapping of gabaa
spatial and temporal averaging, respectively. It may be possible  receptor mediated inhibition in adult rat somatosensory cortetfeu-

that not all parts of the cortex have equal importance in the en-  rophysiol, vol. 75, pp. 293-306, 1991. o
di Furth the time response could have d[?_O] D. M. Senseman, “Spatiotemporal structure of depolarization spread
coding process. Furthermore, p in cortical pyramidal cell populations evoked by diffuse retinal light

ferent relevance at different stages (transient vs. steady state). flashes, Vis. Neurosci.vol. 16, pp. 65-79, 1999.

All of this information is lost in the process of averaging oncel?1] P, Holmes, J. L. Lumley, and ggﬂggg;?gr'%”?ucghecfggjféu%
the global bases are calculated. An important question is if all ., Pyress 19963.' Y ge =5 9

parts of the cortex are carrying information equally, as opposeft2] K. R. Rao and P. C. YipThe Transform and Data Compression Hand-
to some parts carrying more information. The latter possibility _ book Boca Raton, FL: CRC, 2001.

. . . . . S[23] M. Dellnitz, M. Golubitsky, and M. Nicol, “Symmetry of attractors and
would necessarily lead to a different choice of basis functions,™ ¢ arhunen—Loeve decomposition, rends and Perspectives in Ap-

perhaps ones that are localized in both space and time. plied MathematicsL. Sirovich, Ed. New York: Springer-Verlag, 1994,
ch. 4, pp. 73-108.
[24] H. L. Van TreesPetection, Estimation and Modulation TheoryNew
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. . [25] D. M. Senseman and K. A. Robbins, “High speed vsd imaging of visu-
The authors would like to thank D. M. Senseman for his gen-~ ajiy evoked cortical waves: Decomposition into intra- and intercortical
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