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Modeling and Estimation Problems
in the Turtle Visual Cortex

Zoran Nenadic*, Bijoy K. Ghosh, Fellow, IEEE, and Philip S. Ulinski

Abstract—The goal of this paper is to verify that position and
velocity of a spot of light incident on the retina of a turtle are
encoded by the spatiotemporal dynamics of the cortical waves
they generate. This conjecture is examined using a biophysically
realistic large-scale computational model of the visual cortex
implemented with the software package, GENESIS. The cortical
waves are recorded and analyzed using principal components
analysis and the position and velocity information from visual
space is mapped onto an abstract B-space, to be described, using
the coefficients of the principal components expansion. The
likely values of the position/velocity are estimated using standard
statistical detection methods.

Index Terms—Cortical wave, detection, principal components,
visual cortex.

I. INTRODUCTION AND DESCRIPTION OF THE

TURTLE VISUAL CORTEX

M AMMALS have a cerebral cortex that embodies sev-
eral, topographically organized representations of visual

space. Extracellular recordings show that neurons in a restricted
region of visual cortex are activated when a visual stimulus is
presented to a restricted region of the visual space, the classical
receptive field of the neuron [1]. Neurons at adjacent points
in the cortex are activated by stimuli presented at adjacent re-
gions of the visual space. Consequently, there is a continuous
but deformed map of the coordinates of visual space to the co-
ordinates of the cortex. Extracellular recordings from the visual
cortex of freshwater turtles produced a different result [2]. Neu-
rons at each cortical locus are activated by visual stimuli pre-
sented at every point in the binocular visual space, although the
latency and shape of the response waveforms vary as the stim-
ulus is presented at different loci in the visual space. This sug-
gests that there may not be a simple map of the coordinates of
the visual space to the coordinates of the visual cortex in tur-
tles. Position in the visual space is either not represented in
the visual cortex, or is represented in some form other than a
retinotopic map. Experiments conducted by Senseman [3] and
Senseman and Robbins [4], [5] have supported this viewpoint.
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They used voltage-sensitive dye methods to show that presenta-
tion of a visual stimulus to the retina of anin vitro preparation of
the turtle eye and brain produces a wave of depolarization that
propagates anisotropically across the cortex. They used a prin-
cipal components method, the Karhunen–Loeve (KL) decom-
position, to analyze the wave data. Individual waves could be
represented as a weighted sum of as few as three eigenvectors
which are functions of the coordinates of the cortex. Interest-
ingly, presentation of different visual stimuli, such as spots of
light at different points in the visual space, produce waves that
have different representations in the three dimensional (3-D)
eigenspace. This raises the possibility that visual information
is coded in the spatiotemporal dynamics of the cortical waves.
Subsequent research work provided abundant evidence that the
traveling electrical waves were observed not only in turtle vi-
sual cortex [6], but also across olfactory, visual, and visuomotor
areas of cortex in a variety of species [7].

The turtle visual cortex contains at least 11 morphologically
distinct types of neurons, only some of which are well charac-
terized. These are two subtypes of pyramidal cells, the lateral
and medial pyramidal cells, stellate cells, and horizontal cells.
Pyramidal cells have somata located in the intermediate layer
2 of the cortex and are predominantly excitatory. Stellate cells
have somata in the outer layer 1 and are inhibitory. Horizontal
cells have somata in layer 3 and are also inhibitory. Pyramidal
cells and stellate cells receive direct projections from the
dorsal lateral geniculate complex (LGN) [8]. Geniculate axons
intersect lateral and medial pyramidal cells in characteristic
patterns that will be described later [9]. These synapses have
experimentally been determined as the-amino-3 hydroxy-5
methyl-4 isoxazole proprionic acid (AMPA) subtype of gluta-
mate receptor [10]. Pyramidal cells make projections to stellate
cells, horizontal cells and other pyramidal cells. Their synapses
access both AMPA and N-methyl-D-aspartate receptors [10].
Likewise, stellate cells and horizontal cells make feedback
projections to pyramidal cells. These synapses access both
GABA and GABA receptors. Finally, stellate cells project
back to stellate cells via synapses that access GABAand
GABA receptors [11].

We constructed a large-scale model of the turtle visual cortex
that has the ability to simulate cortical waves with the same qual-
itative features as the cortical waves seen in experimental prepa-
rations. After the model had been constructed, the wave data
were analyzed using principal components analysis (PCA). This
leads to a convenient representation of a large-dimensional data
set in a low-dimensional subspace. The responses of the model
to a localized stationary stimulus and a stimulus moving with
constant velocity have been studied in particular. Finally, we
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Fig. 1. (left) Three layers of turtle visual cortex projected onto a single plane. Different colors indicate different cell types. The total number ofcortical cells is
750 and the relative densities of cells are preserved with respect to experimental data. The crossbar indicates the position of rostral (R), caudal (C), lateral (L), and
medial (M) part of the cortex. (right) Compartmental structure of lateral, medial, stellate, and horizontal cells. The spherical compartments represent somata and
the cylindrical compartments are parts of dendrites. Axons are modeled as delays and are not shown in the figure.

use standard statistical methods [Bayesian and maximum-like-
lihood (ML)] to estimate the parameters of unknown stimuli,
based on the cortical response they elicit. The results suggest
that the cortical wave indeed carries information about the posi-
tion and velocity of the stimulus. However, an important caveat
is that we do not yet know if the turtle uses this information in
the cortical wave.

II. DESCRIPTION OF THEMODEL

In this section, we will give a brief description of the
large-scale model of turtle visual cortex. Modeling, in general,
is an evolutionary process and involves numerous parameters,
some of which are obtained by physiological measurements
and some of which are simply tuned in the modeling process.
Comprehensive description of the computational model goes
beyond the scope of this paper and can be found in [12]. Briefly,
the dimensions of the somata and dendrites of individual types
of neurons were based on measurements from Golgi impreg-
nations of turtle visual cortex [13]. Biophysical parameters
for each cell type were measured within vivo intracellular
recording methods [14], [15]. The physiology of each type of
synapse included in the model is known fromin vitro intra-
cellular recording experiments [10]. The kinetics of individual
types of voltage-gated channels have not been characterized
with voltage-clamp methods in turtle visual cortex, so the
parameters needed to implement Hodgkin–Huxley-like kinetic
schemes were obtained from work on mammalian cortex and
constrained by comparing the firing patterns of model cells to
real cells following intracellular current injections. The geom-
etry of the geniculocortical and intracortical interconnections

are known in detail [9], [16]. There is some information on the
basic shape and dimensions of the axonal arbors of stellate and
horizontal cells from Golgi preparations. This data was used to
estimate spheres of influence between stellate and horizontal
cells and their postsynaptic targets.

The visual cortex of freshwater turtles contains three layers.
The intermediate layer 2 contains principally pyramidal cells
with dendrites that extend into layers 1 and 3. The outer layer 1
and inner layer 3 contain mainly inhibitory interneurons. Genic-
ulate afferents make excitatory synapses upon the dendrites and
somata of pyramidal cells and the dendrites and somata of layer
1 neurons. Our model assumes the three layers are projected
onto a single plane (see Fig. 1). Each neuron is represented by
a multi compartmental model based on the anatomy of pyra-
midal neurons and inhibitory interneurons. Each compartment
is modeled by a standard membrane equation and implemented
in GENESIS [17]. The somata are modeled as spherical com-
partments and the dendrites are modeled as cylindrical compart-
ments. The axons are not modeled as compartments but as delay
lines. For a detailed description of compartmental models see
[18]. In Fig. 1, we show the compartmental structure of cortical
interneurons. Maps of the spatial distribution of neurons in each
of the three layers of the cortex were constructed from coronal
sections through visual cortex of a turtle. The maps were di-
vided into an 8 56 array of rectangular areas, each measuring
28 190 m. Experimental data were not available for each of
the 8 56 rectangular boxes and were interpolated at locations
where measurements were not available. An algorithm was de-
veloped in MATLAB that constructed an array of neurons in
each layer that preserved the ratios of cells between layers in
the real cortex. The cells are distributed between 856 blocks
according to the actual density information. Within each block,
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Fig. 2. Linear arrangement of geniculate neurons. The somata are shown as
boxes and the corresponding axons are shown as lines. Only 13 out of 801 LGN
neurons are shown for clarity.

Fig. 3. (top) Simulation of a localized stationary stimulus. A group of
LGN neurons indexed fromn (initial), via n (central), ton (final) is
simultaneously stimulated by a square current pulse with duration of 50 ms
and amplitude of 0.2 nA. The family of stationary stimuli is parameterized by
the location of the centern of the stimulus. (bottom) Simulation of a stimulus
moving with a constant velocity. LGN neurons are sequentially stimulated by
a square current pulse with duration of 50 ms and amplitude of 0.2 nA. The
family of moving stimuli is parameterized by the delay of one square pulse
with respect to its neighbor (slope of the dashed line).

the cell coordinates are chosen randomly from a uniform dis-
tribution, independently for every block. This algorithm is con-
venient as it can generate as many different models as needed,
while retaining the information about the relative densities of
cells in the visual cortex of a real turtle. Most of our models
have approximately 680 pyramidal cells, 50 stellate cells, and
20 horizontal cells (Fig. 1). Due to the nature of the distribution

Fig. 4. Convex hull of polygon of cell coordinates. Only pixels lying inside this
contour will be assigned a real value, based on triangular interpolation. Dashed
lines describe the boundaries of the subimages.

algorithm, the total number of neurons can not be guaranteed
a priori. However, the proposed model contains nominally 750
neurons with the actual numbers varying slightly from simula-
tion to simulation. Biophysical data are not available for neurons
in the dorsal LGN of turtles, so geniculate neurons were mod-
eled as single isopotential compartments with a spike generating
mechanism. Geniculate axons are modeled as delay lines that
extend across the cortex from lateral to medial. The number of
geniculate neurons in the model is . The LGN neurons
are linearly arranged along the lateral edge of the cortex with
axons extending to the cortex (Fig. 2). The axons of the most
rostral and most caudal LGN neurons in the array extend to the
caudal and rostral poles of the cortex, respectively. The other af-
ferents are evenly spaced between these two axons. Geniculate
afferents enter the cortex at its lateral edge, cross over each other
and then run in relatively straight lines from lateral to medial
cortex. The rostrocaudal axis of the geniculate is consequently
mapped along the caudorostral axis of the cortex. The geom-
etry of the geniculate afferents and their spatial distribution are
based on anatomical data from [9]. The number of synaptic sites
(varicosities) assigned to each geniculate afferent is calculated
by multiplying the length of the axon by the average number
of varicosities per 100 m of axon length. The spatial posi-
tions of the individual varicosities (the total of approximately
11 300 varicosities has been used) are assigned to axons using
the distribution of varicosities along the lengths of real axons
[9]. The distribution is strongly skewed to the left, indicating a
greater number of varicosities in the lateral than in the medial
part of the visual cortex. For cortico–cortical connections, we
constructed spheres of influence. Therefore, a cortical neuron
will be connected to any other cell in the cortex within its sphere
of influence. The synaptic strengths were higher in the center of
influence and were linearly reduced with the distance. Propa-
gation times between neurons are calculated using the distance
between a pair of neurons and conduction velocities. The con-
duction velocity for geniculate afferents in turtle visual cortex
has been measured at 0.18 m/s [13]. Cortico–cortical connec-
tions are given conduction velocities of 0.05 m/s, consistent with
measurements of propagating waves in the turtle visual cortex
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Fig. 5. Selected snapshots from the movies corresponding to different stimuli.
Time is measured with respect to the onset of a stimulus, and the membrane
potentials of individual cells (pixels) are color coded (the values near the color
bars are in millivolts). Lateral and medial pyramidal cells have different values
of resting membrane potentials, hence the difference in color at time 0 ms. The
borders of darker color in each snapshot indicate that these pixels lie outside
the convex hull of the polygon of cell coordinates. (top) Snapshots from the
movie corresponding to one of the inputs from the family of stationary localized
stimuli. (bottom) Snapshots from the movie corresponding to one of the inputs
from the family of moving stimuli.

[3], and the conduction velocities for axons of inhibitory in-
terneurons in rat cortex [19].

III. SIMULATION OF STATIONARY AND MOVING STIMULI

The stationary stimulus has been simulated by presenting a
50 ms square current pulse to a set of adjacent geniculate neu-
rons (see Fig. 3). For the purpose of our simulation, 20 equidis-
tant positions of the stimuli have been chosen across the LGN.
The stimuli are labeled from 1 to 20, each input being parame-
terized by the position of the center of the square pulsewith
respect to the LGN neurons. Therefore,input 1 (most caudal
input) corresponds to a square pulse centered at the LGN neuron
201 ( ), andinput 20(most rostral input) corresponds
to a square pulse centered at the LGN neuron 601 ( ).
The other inputs are linearly distributed between the two ex-
trema. The moving stimulus is assumed to be sweeping across
the geniculate complex, from caudal to rostral, and it consists
of a sequence of square pulses, equal in amplitude and duration,

Fig. 6. (top) Comparison of wave propagation of experimental and model data.
Both waves are induced by localized stationary stimuli, presenting a spot of light
in experimental setup and injecting localized square current pulses in the model.
The activities of individual neurons are color coded, as indicated by the color bar
at bottom. (bottom) Location and nomenclature of cortical structures referenced
in this paper: lateral visual cortex (VC), medial visual cortex (VC ), and
dorsomedial cortex (DM). Figure courtesy of David M. Senseman.

which have been delayed with respect to each other (see Fig. 3).
The delay is varied linearly between two preselected values. A
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set of 18 equally spaced delay parameters has been chosen be-
tween the above maximum and minimum values. The velocity
of the slowest signal is therefore calculated at 0.006 m/s (input
20), and the velocity of the fastest signal is 0.03 m/s (input 1),
where these values do not represent the velocities of moving
stimuli in visual space but in the space of LGN. The other in-
puts are linearly distributed between the fastest and slowest. The
overall simulation time is set to 200 ms, as we would like to ob-
serve the behavior of the system in the steady state. While this
calibration in the local LGN coordinate system is useful and
makes simulations easily tractable, it should not be in any way
associated with the position and velocity in the visual space, as
the model has not been calibrated to units of visual arc.

Since the exact locations of individual cells are randomized,
we generated 50 different cortical networks using the algorithm
described earlier. By running 20 stimuli on 50 different net-
works with the same initial conditions, we have obtained a set
of 1000 simulations for both stationary and moving stimuli. The
simulation results consisting of membrane potentials of indi-
vidual neurons have been recorded and saved in a data file. Even
though the data for all neurons are available, we are primarily
concerned with the pyramidal neurons. The responses of pyra-
midal neurons have been visualized as movies. The data have
been spatially resampled from a nonuniform grid of neuron co-
ordinates to an artificially constructed uniform grid. The
program uses triangle-based linear interpolation, although other
methods are also available (triangle-based cubic interpolation,
nearest neighbor interpolation, etc.). The choice of interpola-
tion algorithm did not affect the results. Triangle-based algo-
rithm constructs a triangular grid of scattered data points (cell
coordinates), and assign a value to pixels that are in interior
of the triangles. The out of range data cannot be assigned any
real number value and those pixels are assigned NaN.1 In other
words, the algorithm cannot extrapolate and the pixels lying out-
side the convex hull of polygon of cell coordinates are all as-
signed the value of NaN. The convex hull of the polygon of cell
coordinates for one of 50 cortical samples is shown in Fig. 4.
The value of membrane potential at each pixel was color coded
and the spikes were not removed in the process. Selected snap-
shots from movies corresponding to both stationary and moving
stimuli are shown in Fig. 5. The comparison of experimental and
model waves is shown in Fig. 6. The purpose of this figure is to
show that two waves have similar features, they originate from
the same point in the cortex (rostrolateral edge) and they propa-
gate in both rostrocaudal and mediolateral directions. It should
be noted however, that the regions of the cortex observed by
experiment and model are not quite identical. Senseman [20]
records from dorsomedial cortex (DM) and the medial part of
the visual cortex (VC ), whereas our model is confined to the
medial and lateral parts of the visual cortex, (VC) and (VC )
respectively. Furthermore, the nature of the signals represented
by Fig. 6 is different for experimental and model generated
data. Experiments use voltage-sensitive dye signals, which are
proportional to the membrane potentials of individual neurons
and do not completely resolve individual action potentials. The
model generates membrane potentials which include action po-
tentials. Finally, the stimuli in the experimental setup are (lo-

1The IEEE arithmetic representation for not-a-number (NaN).

calized) retinal light flashes where the stimuli in the model are
injected square current pulses.

Let denote the spatiotemporal signal of response of
the model to different stimuli. Then can be viewed as
a collection of movie frames (snapshots). Given that every frame
is pixels, and every movie has frames, it is clear that the
dimension of could be veryhigh ( ). Further-
more, a comparison of two different responses (movies) is of in-
terest,aswewould liketoquantify thedifferencesandsimilarities
between them. Therefore, an efficient way for movie comparison
has to be found. We now proceed to describe a principal-compo-
nents-based technique for such a comparison. This method was
also used earlier by Senseman and Robbins for the analysis of the
data recorded from the cortex of a real turtle [4], [5].

PCA was introduced independently by many authors at dif-
ferent times. The method is widely used in various disciplines
such as image and signal processing, data compression, fluid
dynamics, partial differential equations, weather prediction, etc.
[21]. In image processing, the method is used for removing a
redundancy (decorrelating pixels) from images [22]. The trans-
formation itself is linear, and represents a rotation of a coordi-
nate system, so that neighboring pixels in the new coordinate
system are less correlated. Moreover, the rotation proposed by
the method is optimal as it leads to a complete removal of the
correlation from neighboring pixels, which is equivalent to diag-
onalizing the image correlation matrix. Consequently, the image
can be approximated in a low-dimensional subspace, using only
selected basis vectors, also called principal eigenvectors. In the
theory of partial differential equations, the method is useful for
finding a separable approximation to the solution of a partial
differential equation, which is optimal in the sense that it max-
imizes the kinetic energy cost functional [23]. Depending on
the context, the method goes by the names: KL decomposition,
proper orthogonal decomposition, Hotelling decomposition and
singular value decomposition. We shall refer to it as KL de-
composition. In the KL decomposition, an pixel frame
is written as a vector, , of size . Therefore, the th spa-
tiotemporal signal can be viewed as a collection of frames

where is the total number of frames (time samples). The av-
erage correlation matrix for a family of movies
is then calculated as

(1)

The matrix is symmetric and positive semidefinite, so its
eigenvalues are all real and nonnegative and the corresponding
eigenvectors are orthonormal and form a basis in. This
basis will be referred to asglobal basis. The eigenvectors corre-
sponding to the largesteigenvalues of are called the prin-
cipal eigenvectors (modes) and theth-order successive recon-
struction of the spatiotemporal signal is given by

(2)

where are the principal modes, the time co-
efficients are given by ,
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Fig. 7. (left) Three spatial principal modes corresponding to stationary
data global basis. Modes are displayed as images: (top)M (x; y), (middle)
M (x; y), and (bottom)M (x; y). (right) Equivalent picture for moving data
global basis. Both bases are calculated based on 1000 movies.

Fig. 8. (top) Phase trajectories in A-space corresponding to the responses to
three stationary stimuli. (bottom) Equivalent picture for three moving stimuli.

Fig. 9. (top) Presentation of a localized stationary stimulus at different
positions (three for experiment and five for model) in the visual space. (middle)
Corresponding phase trajectories in A-space. (bottom) Clusters of points in
B-space as a result of repeated trials. Figure courtesy of David M. Senseman.

and stands for the standard inner product notation. The
time coefficients of the KL expansion (2) are uncorrelated, i.e.,
no further compression (decorrelating) is possible. Furthermore,
the average kinetic energy of theth-order approximation of the
movie is given by

This result is straightforward and follows from the definition
of the average kinetic energy, (2), and the fact that the principal
modes are orthonormal. Thus, the fraction of the average kinetic
energy of the th movie captured by itsth-order approximation
is given by

It has been observed in the analysis that the first few principal
components capture most of the energy content of a movie.
In particular, implies , indicating that the
third-order approximation carries over 99% of the signal energy.
Originally, movie frames are resampled to a 6464 resolution
( ). However, the portions of the snapshots corresponding
to out of range data have to be excluded from the analysis. Re-
call that these pixels were assigned NaN values, and as such
could not be incorporated in the analysis. These pixels could
be assigned some value other than NaN, but such an action
would correlate the data additionally, and the high degree of
compression would not be a genuine wave phenomenon, but
a consequence of this action. Therefore, we take a squared
subimage out of each snapshot and perform the analysis on
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the subimages. The subimages are at 4040 resolution and
the area of the cortex that they cover is shown in Fig. 4. This
area contains on average 350 pyramidal neurons out of 680.
Three principal modes , , and of
the global basis of both stationary and moving data are shown
in Fig. 7. These modes are found from (1) for ,

, and . Therefore, the difference between
two movies will be visible in their time coefficients ,

, and . Said equivalently, the th spatiotemporal
signal is represented by a phase trajectory in a
3-D space of time coefficients, and this space will be referred
to as A-space. In Fig. 8, we show the phase portraits (plots
of the time coefficients) corresponding to the responses to
three stationary and three moving stimuli.

Because the positions of neurons in the model cortex are
randomized with each new simulation, the vector function

can be viewed as a random process.
Statistical analysis of a random process can be facilitated if the
process is further parameterized using a second KL decom-
position. As outlined above, we form an average correlation
matrix as

(3)

where

The th-order successive approximation of theth random
vector is given by

(4)

where are the eigenvectors corresponding to
the largest eigenvalues of the matrix written in the form

rather than . The coefficients are found by
orthogonal projection of a random process to theth eigenvector

Combining results after the double data compression leads to a
convenient representation of theth spatiotemporal signal by a
point in , i.e.,

In our analysis, we use a third-order approximation ( ) and
each data set is represented by a point in 3-D space, conveniently
denoted B-space. Because of the randomness in the model, pre-
sentation of the same stimulus does not produce the same re-
sponse in general. In particular, the same stimulus applied to
several randomly generated cortical networks would produce
as many points in B-space as the number of networks. These
points appear clustered in B-space, and these clusters move in
B-space as the parameters of the stimulus (e.g., position or ve-
locity) change. The illustration of this phenomenon is shown in
Fig. 9, where the model data is compared with the experimental

results. It should be noted that the points from experimental data
are not as clustered as the model data. This could be a conse-
quence of a considerable level of noise in the experiments.

IV. ESTIMATION WITH PRINCIPAL COMPONENTSANALYSIS

In Section III, we have seen how the visual space can be
mapped into a 3-D space of coefficients via the principal com-
ponents representation of the associated spatiotemporal signal
in the model cortex. The B-space construction has been detailed
separately for the stationary and moving case. In this section, we
show how a straightforward Bayesian detection algorithm can be
used to estimate the position of an unknown spot of light or the
velocity of an unknown moving spot of light in the visual space.

As discussed earlier, a set of 1000 simulations for both
the stationary and moving cases is considered. Each of 1000
movies is represented by a point in B-space. The B-space
plot of the points is shown in Fig. 10 for both
stationary and moving case. The points in B-space elicited
by the same stimulus appear clustered, with some of the
clusters overlapping. This indicates that certain stimuli are
perceived with ambiguity, e.g.,input 3, input 4, andinput 5 in
the stationary case andinput 10, input 11, andinput 12 in the
moving case (see Fig. 10). In the eventual process of detection,
it would not be clear to which clusters these points belong.
It seems that the vectors in B-space, even though 3-D, can
be discriminated based on pairs only. Assuming the
points within clusters are normally distributed, the conditional
density function of point given input
can analytically be found as shown in Fig. 11. Given a response
to an unknown stationary(moving) input, the representation
of the response is found as a vector in B-space.
Using Bayes rule, the conditional probability density

(5)

can be calculated for every , and where the prob-
ability density function of the discrete random variableis un-
derstood as a simple probability. The ML is then used to deter-
mine the most likely position (velocity) of the unknown input

(6)

It is interesting to note that the condition
for some and defines

a curve of constant likelihood ratio, and could be used to
partition a decision space [24]. This might be useful for
avoiding an explicit calculation every time a new estimation
is to be performed, as the sample associated with an unknown
parameter would fall in one of the existing ML bins. Assuming
equal prior probabilities of each of the 20 inputs, the ML bin of
the input is simply given by

The illustration of decision space for both stationary and moving
stimuli is shown in Fig. 12. To test our estimation algorithm,
we generated a set of 20 inputs for both stationary and moving
cases. These inputs are the same as the ones used to construct
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Fig. 10. Clusters of points in B-space corresponding to different (a) stationary stimuli and (b) moving stimuli. Each cluster contains 50 points as a result of
applying the same stimulus to 50 different cortical samples. The numbers near the clusters indicate the label of the input responsible for those clusters. The 2-D
versions of the plots are shown for clarity.

Fig. 11. (top) Conditional probability density functions given stationary stimuli. (bottom) Conditional probability density functions given moving stimuli.

Fig. 12. (a) Decision space corresponding to stationary stimuli. (b) Decision space corresponding to moving stimuli. The regions of different colors represent the
bins of ML given a specific input. The numbers associated with each likelihood bin denote the label of the most likely input for that bin. Note that the likelihood bins
for input 9andinput 10are not connected in the stationary case. The bin colors are matching the colors of clusters in Fig. 10. White dots represent the observations
obtained as a response to a set of 20 stimuli.
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the conditional probability density functions, but they are ap-
plied to a randomly generated cortical network not belonging
to the existing set of 50 networks used to build statistics (clus-
ters). The corresponding waves have been recorded and decom-
posed using the procedure described in the previous sections.
This results in a set of 20 points in B-space, where each point
is presumably coming from one of the 20 clusters whose sta-
tistical descriptions have already been found. Depending on its
position in the decision space, each point has been assigned to
a particular likelihood bin, and these points are represented by
the white dots in Fig. 12. It is evident from Fig. 12 that most of
the points are found to belong to the bin corresponding to the
input which indeed elicited the response. The results are some-
what better in the stationary case, as we found only two falsely
detected parameters (see Fig. 12);input 18 is found in bin 19
and inputinput 19is found in bin 20 together with the correctly
detectedinput 20. In the moving case, we found several inputs
that are falsely detected. An explicit calculation for falsely de-
tected inputs has been performed using (5) and (6) and the re-
sults are summarized in Table I. For example, the response to
input 4 is found to most likely belong to bin 5, which is to say
that input 4 is falsely detected asinput 5since there is a 0.7441
likelihood that such response is elicited byinput 5. At this point
we shall explain the source of errors in the estimation algorithm
proposed. Clearly, the accuracy of estimation will be determined
by the level of noise in the system. Recall that the network of the
neurons obeys a certain density law only as a collection. That is,
the exact positions of individual neurons are randomized within
each rectangular block. Secondly, we have discretized our deci-
sion space into a set of 20 inputs, resulting in a set of 20 clusters
which are frequently overlapping. Consequently, the Gaussian
blobs within Fig. 11 are intersecting along the curves of rel-
atively high likelihood, which may result in ambiguity during
estimation and can lead to a false detection. Finally, the esti-
mation method is based on 2-D conditional probability density
functions, even though the vectors in the B-space are 3-D. The
only reason we chose estimation in two dimensions is that the
points were seemingly separable based on pairs only.
This further led to a simple picture, the probability density func-
tions could be visualized and the decision spaces were simple
regions in a plane. It is expected that taking into account the
third coordinate would improve the detection algorithm. The
3-D counterpart of (5) is given by

(7)

and the most likely value of the unknown parameter is found by

The MLs for the moving case based on 3-D algorithm are given
in Table II. The likelihoods are shown only for the parameters
that were falsely detected using 2-D algorithm (Table I). It is
clear that the 3-D algorithm has a better performance, resulting
in no falsely detected inputs. A similar result has been obtained
for the stationary case.

TABLE I
LIKELIHOODS OF FALSELY DETECTEDINPUTS CALCULATED FROM (5)

FOR MOVING CASE ARE SHOWN BELOW. THE BOXED VALUES

ARE THOSE OFML FOR A GIVEN INPUT

TABLE II
LIKELIHOODS OF PREVIOUSLY FALSELY DETECTEDINPUTSCALCULATED

FROM (7) FOR MOVING CASE. ALL INPUTSARE CORRECTLY DETECTED

AS INDICATED BY THE VALUES OF MLs

V. CONCLUSION

The main contribution of this paper is twofold. First, we were
able to synthesize a large-scale model of the turtle visual cortex
knowing the biophysical parameters of the individual cells and
basic aspects of the geometry of interconnections between neu-
rons. Without going into details of the modeling process, we
give a comprehensive description of the model with a special
emphasis on the properties of the actual visual cortex that are
preserved in the model. Our model has shown the basic qual-
itative features of the turtle visual cortex such as the produc-
tion of the cortical wave in response to stationary and moving
stimuli. Similar qualitative behavior has been observed exper-
imentally using voltage-sensitive dye techniques. Our second
contribution is to demonstrate that the spatiotemporal dynamics
of the cortical waves provide a means to map the visual space
onto B-space that encodes the position and velocity parameters
of a spot of light in the visual space. Assuming Gaussian condi-
tional density functions and using ML estimate, we are able to
detect the unknown parameters in the visual space.

As a final remark, the results in this paper require several
comments. The first is that the current version of model includes
only the visual cortex. Neurons in the dorsal LGN are included
only as a series of one compartment models arranged along
a line. They do not adequately represent the two-dimensional
structure of the retinal projection to the dorsal lateral genicu-
late. Retinal ganglion cells in turtles have complex receptive
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field properties that are not included in the model. It is not sur-
prising, then, that the waves in our simulations are not as com-
plex as those seenin vivoby Prechtlet al. [6]. Nonetheless, it is
important to note that KL decomposition has been successfully
applied toin vivo results by Senseman and Robbins [25], so it
is likely that our approach to analyzing the information content
of cortical waves can be applied toin vivo as well asin vitro
results. Second, KL decomposition as presented in this paper
uses the concept of global bases in space and time, obtained by
spatial and temporal averaging, respectively. It may be possible
that not all parts of the cortex have equal importance in the en-
coding process. Furthermore, the time response could have dif-
ferent relevance at different stages (transient vs. steady state).
All of this information is lost in the process of averaging once
the global bases are calculated. An important question is if all
parts of the cortex are carrying information equally, as opposed
to some parts carrying more information. The latter possibility
would necessarily lead to a different choice of basis functions,
perhaps ones that are localized in both space and time.
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