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Abstract: Early extracellular recordings from turtle visual cortex have shown the
existence of a wave of depolarizing activity as a response to a localized light

ashes presented in the turtle visual �eld. Experiments using voltage sensitive dye
techniques have supported this observation. The dynamics of the cortical wave might
be responsible for encoding the parameters of an unknown input stimulus. We develop
a data compression algorithm for representing the cortical response elicited by a family
of stimuli. To process image data we use the principal components analysis method
and we provide a consistent way of choosing the number of principal modes necessary
for e�ective data representation.
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1. INTRODUCTION

Extracellular recordings from turtle visual cortex
showed that the presentation of a stimulus (usu-
ally localized or di�used retinal light 
ashes) in
the visual space of a turtle produces a wave of
activity that propagates across the turtle visual
cortex (Mazurskaya, 1974). This is contrary to the
concept of receptive �eld in mammals, where a
stimulus localized in the visual �eld produces a
localized activity in the brain (Delcomyn, 1998).
The existence of a wave of depolarizing activity
in the turtle visual cortex has been veri�ed us-
ing voltage sensitive dye techniques (Senseman,
1996). The voltage sensitive dye signals could
be visualized as a series of snapshots, and the
movies corresponding to di�erent stimuli could be
compared using the principal components analysis
techniques (Senseman and Robbins, 1998). It has
been observed that the movies could be success-
fully approximated using only a couple of princi-
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pal eigenvectors (modes) and that the di�erences
could be visualized in a low dimensional subspace
of time coeÆcients. This raised the possibility that
the position of a visual stimulus is encoded in the
spatiotemporal dynamics of the wave, and that
the estimates could be made from observations.

Visual cortex of freshwater turtle contains three
topologically distinct layers. Intermediate layer
(layer 2) contains mainly excitatory, pyramidal
cells. Pyramidal cells are organized in two sub-
types, lateral pyramidal and medial pyramidal
cells. Outer layer (layer 1) contains predominantly
inhibitory, stellate cells. Inner layer (layer 3) con-
tains primarily inhibitory, horizontal cells. Layer
2 and layer 1 receive direct synaptic projections
(visual input) from lateral geniculate complex
LGN. Pyramidal cells make excitatory projections
to other pyramidal cells as well as stellate cells
and horizontal cells. Stellate cells make inhibitory
connections to other stellate cells and pyramidal
cells. Horizontal cells make inhibitory connections
to pyramidal cells.



2. COMPUTATIONAL MODEL OF TURTLE
VISUAL CORTEX

Based on anatomical and physiological data, we
have developed a computational model of tur-
tle visual cortex (Nenadic, 2001). The model is
synthesized from the models of individual cor-
tical neurons, information on their spatial dis-
tributions and connectivity patterns. The model
is assembled in GENESIS, a specialized software
for modeling medium to large scale networks of
biological neurons. The response of the network to
di�erent stimuli has been observed and recorded.
In particular we have tested the behavior of the
network to both localized stationary stimuli and
stimuli moving with constant velocity across the
visual �eld.

Our model contains 945 neurons, among which,
679 pyramidal cells, 45 stellate cells, 20 horizontal
cells and 201 LGN neurons. Individual neurons
are modeled using compartmental approach, and
di�erent types of cells have been assigned di�erent
number of compartments, ranging from one com-
partment for LGN neurons to 16 compartments
for lateral pyramidal cells. The spatial densities of
di�erent types of neurons have been obtained from
biological measurements, and the coordinates of
individual cells are drawn at random from the
distributions corresponding to the spatial densi-
ties. All three layers have been projected onto
a single plane and the cells are interconnected.
Generally, a cell is connected to its neighboring
cells within so-called sphere of in
uence. Synaptic
strengths across the sphere of in
uence are graded
by a Gaussian function. The LGN is modeled
as a linear structure, with axons extending into
the cortex, and the axons are modeled as a time
delay. For an extensive description of the model
the reader is referred to (Nenadic, 2001).

Localized stationary stimuli are simulated by a
simultaneous presentation of a square current
pulses of certain amplitude and duration to a set
of adjacent LGN neurons. Moving stimuli are sim-
ulated by delaying localized stimuli sequentially
from left to right, where the delay parameter is
kept constant and is inversely proportional to the
velocity of a moving stimulus. To make problem
tractable, the inputs are labeled; the most left
stationary input is input 1 and the most right
input is input N. Likewise, the input moving from
left to right with the slowest velocity is labeled
as input 1, and the input moving with the fastest
velocity is input N. Other inputs within the two
families are linearly arranged between input 1 and
input N. The responses of the network to di�erent
stimuli have been simulated and recorded.

3. VISUALIZING THE CORTICAL
RESPONSE

As discussed above, we record the response of
the network to various stimuli. In particular we
observe the time responses of cortical neurons i.e.
pyramidal, stellate and horizontal cells. However,
for data analysis we use only the time responses of
the pyramidal cells (lateral and medial), which are
also the most numerous cells in the turtle visual
cortex. Furthermore, experimental data are avail-
able for pyramidal cells, therefore it is possible
to compare our data against experimental results.
The raw spike data has been low-pass �ltered prior
to any analysis. The reason for this is that the
spikes introduce a high frequency component in
the time signal, which may give rise to non-smooth
signals in further analysis. Also, low-pass �ltering
removes the dc component of the signal, which
again is relevant for further signal processing.

Let S : [0; T ] ! Rn be a function of the spike
train sequences corresponding to the network of
n pyramidal cells, where T is the total time of
simulation. Then the function R : [0; T ] ! Rn is
the time response function of n pyramidal cells,
and is de�ned via convolution operator

R(t) =

Z
t

�1

S(�)h(t� �) d�;

where h(t) is the impulse response of a bona �de

low-pass �lter. Given the coordinates (xi; yi) of n
pyramidal cells, the response function R(t) can be
written as a spatiotemporal signal

I(x; y; t) =

nX
i=1

ri(t) Æ(x� xi; y � yi); (1)

where R(t) =

2
6664

r1(t)
r2(t)
...

rn(t)

3
7775 ; and Æ(x; y) is a Dirac

distribution onR2. The signal in (1) can be resam-
pled to a uniform grid of coordinates, and can be
visualized as a sequence of snapshots using MAT-
LAB imaging tools. Among di�erent resampling
methods, we use a triangle-based linear interpola-
tion. The time responses of individual pixels are
color coded, and one such sample has been shown
in �gure (1).

4. MODAL DECOMPOSITION OF
CORTICAL RESPONSE

Our model contains 679 pyramidal cells, and the
simulation time is set to 1; 500ms with the sam-
pling time dt = 1ms. Therefore, the response
function R(t) can be discretized in time and rep-
resented as a matrix in R679�1500. By playing
movies corresponding to di�erent visual stimuli we
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Fig. 1. Selected snapshots from a particular movie
showing the wave propagation. The time is
measured with respect to the onset of a
stimulus. The stimulus is switched o� after
150ms, and the signal is expressed in mV

and color coded.

notice that they are di�erent, and the di�erences
between them have to be quanti�ed. Due to the
large dimension of the data sets, a convenient
compression method has to be found. The entries
of the response matrix R are highly correlated;
the correlation in space is due to the connectivity
of individual neurons (response of a particular
cell is a�ected by the responses of the cells in its
sphere of in
uence), and the correlation in time
is because each cell represents a time invariant
dynamical system whose response depends on the
response in the previous instance. Because of this
redundancy, the representation of the response
matrix R is by no means optimal, and can be
rewritten in a subspace of lower dimension (less
degrees of freedom). One such method that gives
an optimal approximating subspace is the princi-
pal components method which will be introduced
next.

The principal components analysis was intro-
duced independently by many authors at di�er-
ent times. The method is widely used in various
disciplines such as image and signal processing,
data compression (Rao and Yip, 2001), 
uid dy-
namics (Holmes et al., 1996), partial di�erential
equations (Dellnitz et al., 1994), weather predic-
tion, etc. The transformation itself is linear, and
represents the rotation of a coordinate system, so
that the data in the new coordinate system are
less correlated. Moreover, the rotation proposed
by the method is optimal as it leads to a complete
removal of the correlation from neighboring pixels,
which is equivalent to a diagonalization of the im-
age correlation matrix. Consequently, the image
can be approximated in a lower dimensional sub-

space, using only selected basis vectors, also called
principal eigenvectors. Depending on the context,
the method goes by the names: Karhunen-Loeve
(KL) decomposition, proper orthogonal decompo-
sition, Hotelling decomposition and singular value
decomposition. In the further discussion, we shall
refer to it as KL decomposition.

After discretization in time, the response matrix
corresponding to kth data set Rk(t) can be found
as Rk 2 Rn�m where n is the number of cells and
m is the number of time samples. The average
correlation matrix for a set of N di�erent data
sets (possibly resulting out of N di�erent stimuli)
can be found as

C1 =
1

N m

NX
i=1

mX
j=1

(vi
j
)(vi

j
)T (2)

where Rk = [vk
1
jvk

2
j � � � jvk

m
] and vk

j
2 Rn�1. The

matrix in (2) is symmetric and positive semidef-
inite, therefore its eigenvalues are all real and
non-negative and can be ordered in a descend-
ing sequence. The corresponding eigenvectors are
orthonormal and form a basis in Rn. This basis
will be referred to as global basis. The eigenvec-
tors corresponding to the largest p eigenvalues of
C1 are called the principal eigenvectors (modes)
and the pth order successive reconstruction of the
response function Rk(t) is given by

R̂k(t) =

pX
i=1

�k
i
(t)Mi; (3)

where Mi 2 Rn�1 are the principal modes
and the time coeÆcients �k

i
(t) are given by

�k
i
(t) = hvk(t); Mii. Thus, the k

th data set Rk(t)
is characterized by a set of p time coeÆcients
�k
i
(t), and the compression can be written as

Rk(t) !
�
�k
1
(t); �k

2
(t); � � � ; �k

p
(t);

�
: In the exist-

ing literature on modal decomposition of turtle
cortical waves of both experimental (Senseman
and Robbins, 1999) and computational prepara-
tions (Nenadic and Ghosh, 2001), it has been
reported that a `reasonably' good reconstruction
of the cortical response can be obtained with
exceptionally few principal modes, e.g. 3 or 4.
Our analysis indicates a di�erent result. In the
experimental preparation of Senseman, the input
space was not as diverse as in the case of compu-
tational model. That means that the movies used
for generating the global basis were highly corre-
lated, so a large degree of data compression was
possible. The previous version of computational
model (Nenadic, 2001) was lacking suÆcient con-
nectivity, therefore the waves observed in this
network were primarily the consequences of input
stimulus, but not so much of interactions among
the cortical cells. The current state of the model,
as introduced earlier in this article, has a very
prolonged transient response. Namely the waves
are dying out approximately 800 � 1000ms after



the o�set of a stimulus, indicating that there is
a strong interaction among cortical neurons, and
that the wave phenomenon is considerably shaped
by the cortico-cortical connections. To determine
a minimal number of spatial modes necessary for
a `faithful' representation of a response function
Rk(t), we use the concept of distance.

We de�ne a distance between time response func-
tions Rk(t) and Rj(t) as

d(Rk(t); Rj(t)) =Z
T

0

(Rk(t)�Rj(t))T (Rk(t)�Rj(t)) dt
(4)

The idea is to choose the order of reconstruction
which will preserve the distance between two data
sets. This guarantees that two data sets which
were neighbors (in L2 sense) in the space of
response functions will remain neighbors in the
space of time coeÆcients �(t), and this space will
conveniently be denoted by A-space. Let us de�ne
two compressions

Rk(t)!
�
�k
1
(t); �k

2
(t); � � � ; �k

p
(t);

�
and

Rj(t)!
h
�
j

1
(t); �j

2
(t); � � � ; �j

p
(t);

i

as described by (3). Then the distance between

two approximations R̂k(t) and R̂j(t) can be writ-
ten as

d(R̂k(t); R̂j(t)) =

pX
i=1

Z
T

0

(�k
i
(t)� �k

j
(t))2 dt

(5)

The result given by (5) is easy to prove and
follows from the fact that principal modes are
orthonormal.

We have seen how a time response function
R : [0; T ] ! Rn can be compressed to a function
R̂ : [0; T ] ! Rp (p < n) by virtue of the KL
decomposition. The time function thus obtained
still does not have a convenient form, and can
be further decomposed for proper analysis. The
idea is to use the KL decomposition once again,
this time on data sets represented by R̂(t). After
the dimension p of approximating subspace has
been found, we can construct a global basis for
the second KL decomposition by calculating the
correlation matrix

C2 =
1

N

NX
i=1

AiAiT

where Ai =
�
ai
1
; ai

2
; � � � ; ai

p

�T
and where ai

j

represents the time function �i
j
(t) discretized in

time, i.e. ai
j
=

�
�i
j
(1); �i

j
(2); � � � ; �i

j
(m)

�
: De-

spite its simplicity, this method has a serious
drawback in practical implementation. Namely,
the dimension of Ai is very large, Ai 2 Rp�m,
which implies that the matrix C2 has p � m

eigenvalues/eigenvectors. Such a computation can
be easily performed for a low order function ap-
proximation (p small). However, we have already
indicated that such approximation is not useful,
therefore solving for the eigenvalues and eigenvec-
tors of C2 may be computationally expensive if
not impossible on commercial digital computers.
We propose to approximate the eigenvectors of
C2 (basis vectors for second KL decomposition)
by the method of averaging. The method consists
of a recursive algorithm where the �rst principal
mode of C2 is approximated by a vector that
represents the average of the collection of vectors
fA1; A2 � � � ; ANg, i.e.

�̂1 =

P
N

i=1
Ai

jj
P

N

i=1
Aijj

;

and the corresponding residual vectors are given
by ei = Ai � hAi; �̂1i. Because the residual vec-

tors satisfy the following property
P

N

i=1
ei = 0;

their average cannot be taken as a basis vector.
Equivalently said, the residual vectors point in
many di�erent directions and consequently their
average gives rise to a zero vector. Thus, we need
to change the directions of certain number of
residual vectors, by 
ipping their signs. Let ek be
any nonzero residual vector from the collection
fe1; e2 � � � ; eNg. We calculate the cosine of the
angle between ek and ei (8i = 1; 2; � � � ; N), and
change the sign of those vectors with correspond-
ing negative cosine. If

S = fj : hej ; eki < 0g;

then ej = �ej . Then the approximation to the
second principal mode can be found as

�̂2 =

P
N

i=1
ei

jj
P

N

i=1
eijj

:

This procedure can be repeated as many times as
necessary to obtain a desired number of principal
modes. Note that the vectors thus obtained are
orthonormal and form a basis in a Euclidean space
of proper dimension. Once the approximation to
the global basis is known, the qth order successive
approximation of Ak(t) is given by

Âk(t) =

qX
i=1

�k
i
�̂i(t);

where Ak(t) =
�
�k
1
(t); �k

2
(t) � � � ; �k

N
(t)
�
, and

�k
i
= hAk(t); �̂i(t)i. After the double data com-

pression each time response function is repre-
sented by a set of q real numbers Rk(t) !�
�k
1
; �k

2
; � � � ; �k

q

�
. The coeÆcients � belong to a

q dimensional Euclidean space, called B-space. As
before, the distance can be written as

d(Âk(t); Âj(t)) =

qX
i=1

(�k
i
� �

j

i
)2; (6)

and this result readily follows from the fact that
the basis vectors are orthonormal.



5. SIMULATION RESULTS

We performed simulation for both stationary and
moving stimuli. Stationary stimuli are localized
from left to right, and are labeled from 1 to 19.
They are parameterized by their center point,
width and amplitude of the square current pulse.
The width is kept constant to 20 LGN cells and
the amplitude is set to 0:2nA. The moving stimuli
are labeled from 1 to 18 and represent a localized

ash of light moving with a constant velocity from
left to right. The stimuli are parameterized by
the velocity, the slowest stimulus being input 1

and the fastest stimulus being number 18. The
distances are calculated based on formulas (4),(5)
and (6). The number of modes p and q are found
such that the distance is preserved. For the sta-
tionary input case p = 170 is found to be the
compression that preserves the distance. In the
second KL decomposition, q = 37 provides suÆ-
ciently close distances. Global basis is calculated
based on N = 37 data sets, and the time responses

Fig. 2. Three distance matrices are displayed as
images. The top �gure refers to the distance
matrix D1. The distance matrix D2 is given
in the middle and D3 is shown in the bottom.

have been truncated at T = 1; 000ms, with the
time sample dt = 1ms. We now form 3 matrices
D1, D2 and D3 of distances in three di�erent sub-
spaces, namely the space of time response func-
tions, A-space and B-space. MatrixD1 is a matrix
of distances in the space of time response func-
tions, so thatD1(i; j) = d(Ri(t);Rj(t)) where the
distance is calculated by (4). Likewise, D2(i; j) =

d(R̂i(t); R̂j(t)) and D3(i; j) = d(Âi(t); Âj(t)),
where the two distances have been evaluated us-
ing (5) and (6), respectively. The three distance
matrices have been visualized and displayed in
�gure 2, where darker shades represent smaller
distance and vice versa. The three images from
�gure (2) are quite similar, as are the distance
matrices D1, D2 and D3. Similar analysis has
been applied to the response to moving stimuli,
and the two numbers are found to be p = 170 and
q = 18. The corresponding distance matrices are
shown in �gure (3).

Fig. 3. Three distance matrices are displayed as
images. The top �gure refers to the distance
matrix D1. The distance matrix D2 is given
in the middle and D3 is shown in the bottom.



6. CONCLUSIONS

In this article we introduced a large scale com-
putational model of turtle visual cortex. Such a
model fairly accurately captures some of the im-
portant features of a real visual cortex (Nenadic,
2001). In the second part of the article we in-
troduce the KL decomposition, which proved to
be quite useful in the analysis of generated spa-
tiotemporal wave forms. Unlike the analysis of
experimental data and existing computational
model, which indicated that the waves could be
analyzed using only a few principal modes, our
analysis has provided a di�erent result. We use the
concept of distance in L2 (Euclidean distance for
discrete algorithms), to �nd the minimum number
of principal modes that will preserve the distance
from original space to a subspace of reduced di-
mension. This might be important if statistical
inferences on the parameters of an unknown input
are to be made (Nenadic, 2001) with a certain
level of con�dence. We also introduce the approx-
imate algorithm for �nding the best approximat-
ing subspace in the sense of KL decomposition.
This algorithm, even though yielding a subopti-
mal solution, proves more eÆcient over the clas-
sical eigenvalue/eigenvector problem, as it calcu-
lates only necessary (minimum) number of modes,
starting from the �rst one (very rarely do we need
all principal modes). The work outlined above
can be extended to a detection problem, where
one could build a statistics on the coeÆcients �
by imposing randomness in the model. Once the
conditional densities of observations given stim-
uli are known, Bayesian and maximum likelihood
methods can be used for detection.
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