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Abstract— We present a simple, computationally efficient
recognition algorithm that can systematically extract useful
information from any large-dimensional neural datasets. The
technique is based on classwise Principal Component Analysis,
which employs the distribution characteristics of each class
to discard non-informative subspace. We propose a two-step
procedure, comprising of removal of sparse non-informative
subspace of the large-dimensional data, followed by a linear
combination of the data in the remaining subspace to extract
meaningful features for efficient classification. Our method pro-
duces significant improvement over the standard discriminant
analysis based methods. The classification results are given for
iEEG and EEG signals recorded from the human brain.

I. INTRODUCTION

A brain-computer interface (BCI) is a communication link

between the brain and an external device. A class of BCIs

that are based solely on cognitive signals have received

increased attention recently [1], [2]. These systems could be

potentially useful for improving the quality of life of patients

with locked in syndrome and other individuals with severe

motor deficiencies. BCI typically consists of an assistive

(external) device and a set of algorithms that enable the

interaction of the brain and the device [3], [1]. BCIs can

be classified into two categories: invasive and non-invasive.

Non-invasive BCIs are typically realized by recording the

neural activity from the surface of the scalp by means of

electroencephalography (EEG) [1], [2] while invasive BCIs

require implantation of recording electrodes through surgical

procedure. In this article we will focus on both invasive and

non-invasive BCIs, although the technique we develop can

be potentially useful beyond BCI applications.

The main function of a BCI system is to analyze neural

patterns in real time and to utilize this information for

communication with the external devices (e.g. computers or

robots). To this end a training database is created, consisting

of multiple records of neural signals, conditioned upon

various cognitive classes (e.g. imagination of left vs. right

hand movements [4]). Future (unknown) intentions are then

decoded based on how well the corresponding neural signals

match the class-conditional signals in the training database.

EEG signals, commonly used in non-invasive BCI appli-

cations, are spatio-temporal and large-dimensional. Conse-

quently, their analysis is hindered with two major obstacles.
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Firstly, the dimension of data, n, by far exceeds the number

of samples, nt , in the training database, giving rise to so-

called small sample size conditions [5]. Under the small

sample size conditions, the sample statistics of data can

be extremely poor, if not meaningless. More specifically,

the covariance matrices are highly singular. Secondly, large-

dimensional data necessarily translates to the curse of di-

mensionality, which presents challenges in handling and

manipulation of statistical data. In particular the inversion

and spectral decomposition of large matrices may not be

feasible with standard computer architectures.

For many BCI applications these challenges are tackled

heuristically. For example, a common approach is to separate

the processing in space and time [2], [4], without discussing

explicitly the consequences of this space-time separability

assumption. Furthermore, a vast majority of these studies

utilizes the spectral power of EEG signals (e.g. µ-band or β -

band [2], [4]), as low-dimensional features of interest. While

the power/frequency representation is physically intuitive, it

is unclear why these ad hoc features should have optimal pre-

dictive power. Several studies [6], [7], [8] report significantly

better decoding results with the use of other (more abstract)

features. Another common strategy, often used in conjunction

with the above, is to rank individual features (or recording

electrodes) according to some criterion. The feature set is

then constructed by concatenating a small number of features

on the top of hierarchy. This approach, however, ignores the

joint statistical properties of the features, which might result

in suboptimal decoding performance.

In this article, we present a computationally efficient,

locally adaptable, classification technique. Our method does

not assume space-time separability and it utilizes joint sta-

tistical properties of the features. The main idea behind

our technique is to identify and discard a useless (non-

informative) subspace in data. The recognition is then carried

out in the residual space, where the small sample size condi-

tions and the curse of dimensionality are no longer concerns.

While our method was developed and tested on human EEG

and intracranial EEG (iEEG) data, the technique is applicable

to any large-dimensional spatio-temporal biomedical data,

and in general to any large-dimensional statistical data.

II. CLASSWISE PRINCIPAL COMPONENT ANALYSIS

Under the small sample size conditions, a large portion

of the data space is sparse and carries very little or no

useful information. To obtain meaningful data statistics, this

irrelevant subspace must be discarded as noise, which is

typically accomplished by global dimensionality reduction
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Fig. 1. (A) PCA (dashed) vs. cPCA subspace for 2-class case, where the classes ω1 and ω2 are represented as Gaussian contours.(B) Test data x∗ projected
on reduced subspace S1 to produce test feature x∗1. (C) x∗ projected on S2 to produce x∗2

techniques, such as Principal Component Analysis (PCA)

or Independent Component Analysis (ICA). However, both

PCA and ICA rely on statistical properties of the common

data distribution, while the class-conditional statistics are ig-

nored. Therefore, it can be argued that global dimensionality

reduction techniques may be suboptimal for classification

purposes.

Large-dimensional data is commonly encountered in face

(image) recognition problems, where Linear Discriminant

Analysis (LDA) [5], and variants thereof [9], [10], have

been successfully used. However, our experience with face

recognition techniques applied to brain data were somewhat

disappointing [7]. Motivated by these limitations, we pro-

posed a modification of the direct LDA (DLDA) method [9],

by introducing a threshold [7], whose role was to regularize

the covariance matrix in a manner similar to the standard

shrinkage approach [11]. However, the optimum value of

the threshold was selected via internal cross-validation (CV),

which rendered the method computationally expensive. Fur-

thermore, LDA-based methods tend to overfit under the

small sample size conditions giving error rates which are

not generalizable.

In this article we exploit the strength of PCA as a di-

mensionality reduction technique, while preserving the class-

specific information to facilitate subsequent classification.

Our technique is based on classwise PCA (cPCA) and results

in a simple piecewise linear dimensionality reduction tech-

nique. Fig. 1 (A) illustrates the major difference between the

classical PCA method and our technique, applied to a binary

class case. In general, for c-class problems, our technique

generates as many as c subspaces {S1, S2, · · · , Sc}, which

approximate some nonlinear low-dimensional data manifold.

Presumably, a data point from the class ωi is best represented

in the local subspace Si, although this is not necessarily true

and further tests are required (see Section II-B). On the other

hand, PCA approximates data using a single low-dimensional

subspace, and is ignorant of any class-specific information

(e.g. curvature). The details of our algorithm will be given

for c = 2, and the extension to an arbitrary number of classes

is straightforward.

A. Feature Extraction

Let ωi (i = 1,2) denote two classes with means µi, and

covariances Σi, and let x∗ ∈ R
n be unknown (test) data to be

classified. In the first step, x∗ is represented in 2 subspaces, S1

and S2 (see Fig. 1), by means of the following transformation

x∗i = FT
i (x∗−µi) i = 1,2 (1)

where the columns of Fi ∈ R
n×m′

i are taken as the basis

vectors of Si. The two classes are transformed in a similar

fashion [Fig. 1 (B)(C)]. In the simplest scenario, Fi = Vi,

where Vi ∈ R
n×mi consists of the mi (mi to be chosen)

principal components of the class ωi. To account for classes

whose principal directions are nearly parallel, and hence the

projections of the two classes to Si are highly overlapped,

we propose to augment Fi with Vb ∈ R
n×1, where Vb ∝

µ1 − µ2. This step ensures that class differences arising

from the two means are accounted for. For c-class cases,

Vb readily generalizes to a basis spanned by the columns

of the between-class-scatter matrix, commonly used in LDA

applications [11]. To keep all projections orthogonal, the

columns of Fi = [Vi |Vb] are orthonormalized through the

Gram-Schmidt procedure.

While the above procedure typically yields Si of suffi-

ciently low dimension (m′
i ≪ n), where the size of data

is no longer an obstacle, further improvements in terms

of classification accuracy are possible with simple feature

extraction techniques applied directly to the subspace Si. If

linear feature extraction techniques are used (e.g. LDA), the

mathematical formalism (1) remains the same, with mere

modifications in the definition of Fi. More specifically, Fi =
[Vi |Vb]Ti, where Ti ∈ R

m′
i×m is the feature extraction matrix

of the chosen method. In this article we use an information-

theoretic technique called Information Discriminant Analysis

(IDA), whose advantages over LDA and similar techniques

have been discussed at length in [12]. Unlike LDA, IDA
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has no constraints regarding the final dimension, m, of the

feature space. However, BCI data is generally so sparse

(small nt) that the choice of m is severely limited. In our

experience, working with 1 ≤ m ≤ 3, not only yields the

best performance, but also provides a safeguard against

overfitting [8], [7].

In summary, our feature extraction technique is a two-step

procedure. In the first step, a large-dimensional and mostly

sparse subspace of the original data space is discarded. In

the second step, the remaining data is linearly combined into

meaningful features for the purpose of classification.

B. Classification

Due to piecewise linear nature of our feature extraction

method, the test data x∗ is represented in 2 feature subspaces

[Fig. 1 (B)(C)]. To complete the feature extraction process,

one of the subspaces must be eliminated. It turns out that

this question can be solved within a classification framework,

which is the ultimate goal of our technique. Therefore, the

formal completion of the feature extraction process can be

viewed as a bi-product of the classification process.

For simplicity, we will assume that the classes are Gaus-

sian with prior probabilities, P(ωi). A straightforward appli-

cation of the Bayes classifier at the first subspace yields

P(ωi1 |x
∗
1) =

p(x∗1 |ωi1)P(ωi)

p(x∗1)
i = 1,2 (2)

where p(x∗1) = ∑2
i=1 p(x∗1|ωi1)P(ωi), and P(ωi1 |x

∗
1) are the

posterior probabilities of the two classes in the first subspace.

Since (1) is an affine transformation, both classes remain

Gaussian, i.e. p( . |ωi1) ∼ N (FT
1 (µi − µ1),F

T
1 Σi F1). Based

on the first subspace, x∗ is assigned to the class ωk with the

maximum posterior probability

k = arg max
i=1,2

P(ωi1 |x
∗
1)

Similarly, x∗ is transformed to the second subspace [see

Fig. 1 (C)], and its class membership, ωl , is determined as

follows:

l = arg max
i=1,2

P(ωi2 |x
∗
2)

where

P(ωi2 |x
∗
2) =

p(x∗2 |ωi2)P(ωi)

p(x∗2)
i = 1,2

and p(x∗2) is defined analogous to p(x∗1). Also note that

p( . |ωi2) ∼ N (FT
2 (µi −µ2),F

T
2 Σi F2).

Therefore, at each feature subspace, the test data, x∗, can

be associated with one of the classes. A final decision, x∗ ∈
ωg, is made by a direct comparison of the optimal class

assignments per individual subspaces, i.e.

g = argmax
k, l

[P(ωk 1 |x
∗
1) P(ωl 2 |x

∗
2)]

III. EXPERIMENTAL RESULTS

The performance of our method was tested on a set of

iEEG data, adopted from Rizzuto et al. [6], and an EEG

dataset recorded in our lab. A brief account of the iEEG

experiments will be presented next. For more details, the

reader is referred to [6], [8], [7].

The iEEG signals were recorded from the human brain

during a standard memory reach task, consisting of 4 periods:

fixation, target, delay, and reach. The appearance of a ran-

dom target, either left or right of the fixation point, marked

the onset of the target period. Once the target disappeared,

the delay period started. The disappearance of the fixation

target marked the onset of the reach period. The duration

of each period was randomized and lasted between 1 and

1.3s, and the total number of electrodes implanted in both

hemispheres was 91. A total of 162 trials were recorded for

each period. The signals were amplified, sampled at 200Hz

and band-pass filtered. The goal of our study is to predict the

label of the trial (left vs. right) based on 1s of data during

target, delay and reach period. Note that data is a vector in

18200-dimensional space (n = 91×200).

For the EEG experiments, a similar set-up was used, with 2

periods: fixation and target. The EEG signals were acquired

using an EEG cap (Electro-Cap International, Eaton, OH)

with 6 electrodes, and the signals were amplified, band-pass

filtered and sampled at 200Hz (Biopac Systems, Goleta,

CA). The number of trials (left+right) was nt = 140 per

session, and there were 3 such sessions. Our goal is to predict

the label of the trial (left vs. right) based on 1s of data during

target period.

The performance of our method was assessed through

leave-one-out CV as explained below. A single trial (out of

nt ) was selected for testing, and the remaining trials were

designated for training. This procedure was repeated nt times,

each time choosing a different sample as a test trial. Within

a single fold of CV the following steps were performed:

1) cPCA was applied to the training data. Principal com-

ponents with an eigenvalue smaller than 1% of the

total variance (trace of the covariance matrix for each

class), were discarded. This effectively determines Vi,

and in turn mi (see Section II-A). The basis Vb was

calculated, and the transformation matrix Fi = [Vi |Vb]
was found.

2) The training data was transformed according to (1),

and the feature extraction matrices, Ti ∈ R
m′

i×1, were

obtained using IDA on each of the subspaces. This

resulted in two 1-dimensional (1-D) feature subspaces.

Note that the full transformation matrix can be for-

mally written as Fi = [Vi |Vb]Ti.

3) The testdata, x∗, was transformed to the 2 feature

subspaces, and its posteriors, P(ω ji |x
∗
i ) (i, j = 1,2),

were calculated. Class membership was determined as

per classification rule, explained in Section II-B

The overall performance is estimated by dividing the number

of correctly classified trials by nt .

The performance of our method was compared to those
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of DLDA [9] and threshold-based DLDA methods [7]. All

decoding results for DLDA and threshold-based DLDA were

based on the quadratic classifier, and are comparable to our

classification strategy (Section II-B).

TABLE I

THE PERFORMANCES (%) OF CPCA, DLDA AND THRESHOLD-BASED

DLDA (T-B DLDA) FOR IEEG DATA, DURING target, delay AND reach

PERIOD. (TOP) UNCONSTRAINED, (BOTTOM) CONSTRAINED DATA.

Period n Time DLDA T-B DLDA cPCA+IDA

target 18200 all 70.37 72.22 79.01

delay 18200 all 58.02 58.64 61.73

reach 18200 all 66.05 66.05 70.99

target 10920 150:750 72.22 80.25 83.33

1920 150:750 86.42 87.06 85.80
3200 all 83.95 87.65 88.27

6400 all 85.80 92.59 87.65

delay 9600 all 65.43 71.60 73.46

TABLE II

THE PERFORMANCES (%) OF CPCA, DLDA AND THRESHOLD-BASED

DLDA FOR EEG DATA, DURING target PERIOD

Session n Time DLDA T-B DLDA cPCA +IDA

1 1200 all 52.14 54.29 75.71

1 180 100:250 60.71 62.86 90.00

2 1200 all 50.71 52.86 62.14

2 180 100:250 55.00 55.71 82.14

3 1200 all 57.24 58.69 75.35

3 180 100:250 60.14 61.59 90.58

The estimated classification rates for the iEEG and EEG

datasets are shown in Tables I and II, respectively. Our

cPCA-based classification method outperforms the other

methods in almost all cases by a significant margin. In

some cases, our method produces an improvement of around

50% over DLDA-based methods, using both unconstrained

and constrained data. Usually the first 100 − 150 ms of

the target period can be discarded due to visual processing

delay [13]. Similarly, the electrodes can be constrained based

on brain areas of interest. Various combinations of space time

constraints have been reported in Tables I and II.

In particular, with the EEG datasets, DLDA-based meth-

ods fail to capture the class information, yielding nearly

chance-level classification rates, while our method produces

significant improvement. Note that the features of our method

have been limited to 1-D subspace. This constraint was im-

posed for comparison purposes, since LDA-based techniques

operate on at most (c − 1)-D subspaces (c = 2 here). By

allowing features of larger dimension (e.g. m = 2,3), the

classification rates of our technique were slightly better. The

superior performance of our method can be attributed to the

fact that LDA-based methods are susceptible to the noise,

which explains their good performance on less noisy tasks,

such as face recognition.

IV. CONCLUSIONS AND FUTURE WORKS

Using classwise PCA, we have developed a novel clas-

sification technique for large-dimensional data. The method

is particularly suited for noisy measurements, arising in the

imaging of brain’s electrical activity (e.g. EEG, iEEG). We

hypothesize that the technique will be a useful analysis tool

for any large-dimensional biomedical data, and in general,

for any data hindered with the small sample size conditions.

Our current research efforts are directed toward the validation

of our technique on a variety of large-dimensional recogni-

tion problems.

The major weakness of our technique is that it does not

scale favorably with the number of classes, c. In particular

both the number of possible feature subspaces, and the

dimension of the intermediate subspaces, Si, increase with

c. However, this scaling is linear, as opposed to frequently

used pairwise criteria [14], [15], which scale quadratically

with c. Moreover, within a single subspace, our feature

extraction is essentially linear, and reduces to simple matrix

manipulations, which can be implemented efficiently.
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