
Information Discriminant Analysis (IDA)

Zoran Nenadic, D.Sc.

October 4, 2007

1 Introduction

This tutorial is an accompanying document to the computer code for information discriminant
analysis. The details of the method can be found in [1] and the computer code is written in
MATLABTM. The code consists of several basic functions:

(1) negative mu.m

(2) ida feature extraction matrix.m

(3) orthonormalize.m

negative mu.m returns the value of the µ-measure whose maximization yields a feature extraction
matrix, T ∗. This function can return additional arguments, namely the gradient and the Hessian
of µ with respect to the current feature extraction matrix, T . The minimization of µ is iterative in
T , and knowing the gradient and the Hessian of µ enables feasible computations. The initial value
of T is chosen by the user. For more info type help negative mu in MATLABTMcommand prompt.

ida feature extraction matrix.m returns the optimal feature extraction matrix, T ∗, as well as
the value of the µ-measure at the optimal feature subspace. ida feature extraction matrix.m
uses a built-in MATLABTMoptimization function fminunc.m, therefore to run this function Opti-
mization Toolbox may be necessary (see below for exceptions). Since all MATLABTMoptimization
routines are written as minimizations, the maximization of the µ-measure is achieved as the min-
imization of −µ. Hence the name of the function above (negative mu). The input arguments
of ida feature extraction matrix.m allow for various choices of initial condition, optimization
tolerances, size of feature space, optimization method, etc. Type ida feature extraction matrix
in MATLABTMcommand prompt to learn more about this function.

orthonormalize.m is a function I wrote not being aware of MATLABTMfunction orth.m. It
turns out that orth(A’)=orthonormalize(A)’, where A is an arbitrary matrix. In addition,
orthonormalize.m returns the largest singular value of A. This function is an auxiliary function
and is used to orthonormalize the feature extraction matrix T .

The optimization in ida feature extraction matrix.m can be implemented using the conjugate-
gradient method. It runs very efficiently, and in general is faster than the trust-region method,
used by fminunc.m. This is especially true for large-scale problems, where the feature extraction
matrix, T , has a lot of elements. For this purpose two additional functions are needed:

(4) conjugate gradient.m

1

http://cbmspc.eng.uci.edu/SOFTWARE/IDA/negative_mu.m
http://cbmspc.eng.uci.edu/SOFTWARE/IDA/ida_feature_extraction_matrix.m
http://cbmspc.eng.uci.edu/SOFTWARE/IDA/orthonormalize.m
http://www2.imm.dtu.dk/~hbn/Software/conj_grad.m


(5) linesearch.m

These functions were written by Hans Bruun Nielsen, and the above links point to his web page.
As far as I can tell, the functions are bug-free, except for one minor thing: I had to replace the
variable named alpha in conjugate gradient.m with Alpha. I think the code is several years old,
and meanwhile alpha.m became a legitimate MATLABTMfunction. Therefore, using alpha will
cause MATLABTMto call the function, and consequently report an error.

Using conjugate gradient.m places some constraints on the way the objective function (in this
case negative mu.m) is called. In particular, the parameters of negative mu.m have to be passed
as a single argument. In addition, conjugate-gradient uses no Hessian, and so I decided to write a
version of negative mu.m that works with conjugate gradient.m. The function is called:

(6) negative mu cg.m

This function is marginally different from its original version, but requires some manipulations of
the feature extraction matrix, T , so I decided to write a separate function. Anyway, with these 6
functions, one should be able to implement IDA as a feature extraction technique. Final remark:
running conjugate-gradient method does not require MATLABTMOptimization Toolbox.

2 Example

Application of these functions is illustrated on data set Satellite from the UCI machine learn-
ing repository. This data set consists of 6435 samples (each sample is 36-D). The first 4435
samples are used for training, with the remaining samples used for testing. The number of
classes is 6. For example, running [pc mu T et] = test satellite(2,10,1,’lda’,’tr’); from
MATLABTMcommand prompt returns the following:

• The classification accuracy pc, determined by the linear and quadratic Bayesian classifiers.

• The value of the µ-measure mu in the optimal feature space.

• The optimal feature extraction matrix T.

• The elapsed time et.

The input arguments represent:

• The size of the feature space m = 2 (passed to (2)).

• The number of optimization runs Nruns = 10 (passed to (2)).

• Plot indicator PlotFlag = 1 to enable the plotting of features.

• Initial condition (initial choice of feature extraction matrix) is set to linear discriminant
analysis (LDA) matrix (passed to (2)).

• Choice of optimization method is set to trust-region method (functions (2) and (1) will be
called).

2

http://www2.imm.dtu.dk/~hbn/Software/linesearch.m
http://www2.imm.dtu.dk/~hbn
http://cbmspc.eng.uci.edu/SOFTWARE/IDA/negative_mu_cg.m
http://mlearn.ics.uci.edu/databases/statlog/satimage/
http://mlearn.ics.uci.edu/MLRepository.html
http://mlearn.ics.uci.edu/MLRepository.html


In case you care, here is the function test satellite.m posted. Note that the function is specif-
ically tailored to Satellite data. Also note that it is assumed that a file Satimage.mat resides in
the same directory as test satellite.m. This file should contain a variable Data in the form of
6435 × 37 matrix. The last column of this matrix contains class label indicators (integers), e.g.
{0, 1 · · · , 5}. Type help test satellite or take a look at the source code for further information
on this function. Final note: running test satellite.m will call classify.m which is a function
from MATLABTMStatistics Toolbox. If the toolbox is not installed, these functions (linear and
quadratic classifier) can be easily written.

Figure 1: 2-D features corresponding to the training samples of the Satellite data. Colors indicate
class memberships.

Fig. 1 shows the resulting 2-D feature plot. The performances (percent correct) of the linear
and quadratic classifiers are 65.90% and 72.45%, respectively. Table 1 shows results for various
dimensions of the feature space. IDA is initialized with two methods: LDA and CHE (Chernoff
method of Loog and Duin [2]). For m > 5, LDA does not yield a feature extraction matrix, therefore
a random matrix was used instead. These results are separated from LDA-initialized results by a
horizonal line (see Table 1). The boxed values represent the best results for each classifier-method
combination.

3

http://cbmspc.eng.uci.edu/SOFTWARE/IDA/test_satellite.m


Table 1: Performances (% correct) of IDA, the method of Loog and Duin [2] (CHE) and LDA.
The options in the parentheses are the number of runs (random restarts), the initialization method
(Chernoff,IDA), and the optimization method (trust-region, conjugate-gradient).
m IDA, (10,‘che’,’tr’) IDA, (10,‘lda’,’tr’) IDA, (10,‘lda’,’cg’) CHE LDA

(L) (Q) (L) (Q) (L) (Q) (L) (Q) (L) (Q)

1 59.20 67.30 59.20 67.30 59.20 67.30 71.45 73.45 52.35 56.50

2 65.90 72.45 65.90 72.45 65.90 72.45 80.75 81.10 75.95 78.35

3 82.15 84.75 82.15 84.75 82.15 84.75 82.00 84.55 82.30 84.10

4 82.30 85.20 82.30 85.15 82.30 85.15 82.20 84.25 82.75 84.70

5 82.25 83.65 82.25 83.65 82.25 83.65 82.25 84.10 82.85 84.50

6 81.80 83.40 81.65 83.25 81.80 83.40 82.05 83.50

7 82.00 84.15 81.65 84.20 81.65 84.15 82.45 84.25

8 82.30 83.85 81.55 83.60 81.80 84.60 82.55 84.00

9 82.65 84.20 82.15 84.15 82.25 84.15 82.70 84.05

10 82.75 84.15 82.50 84.25 82.60 84.50 82.95 84.35

11 82.85 83.75 82.15 84.10 82.55 83.95 82.75 84.30

12 82.80 83.95 82.65 84.25 82.40 84.30 83.00 84.50

13 82.75 84.10 82.55 84.35 82.60 84.75 82.80 84.35

14 82.80 83.95 82.70 84.55 82.75 84.45 82.75 84.60

15 82.80 84.50 82.50 84.85 82.80 84.35 82.80 84.90

16 82.85 84.50 82.40 84.95 82.90 84.50 82.75 84.55

17 83.10 84.70 83.05 84.65 83.10 84.70 82.90 84.85

18 83.20 84.95 83.05 84.85 83.20 84.95 83.00 85.15

19 83.30 85.10 83.20 85.05 83.30 85.10 83.00 85.10

20 83.10 84.95 82.90 84.95 82.85 85.00 82.85 85.25

21 82.85 85.10 82.90 85.15 82.85 85.10 82.65 84.95

22 83.00 85.20 82.75 85.20 83.00 85.20 82.75 85.05

23 83.05 85.00 83.05 85.15 83.05 85.00 82.85 85.05

24 82.95 85.00 82.75 84.95 82.95 85.00 82.75 84.90

25 82.75 84.85 82.90 85.00 82.75 84.85 82.80 84.95

26 82.90 84.70 82.90 84.65 82.90 84.65 82.80 84.90

27 82.85 84.75 83.00 85.00 83.10 84.95 83.05 84.85

28 82.80 85.00 82.90 84.95 82.80 85.00 82.80 84.80

29 82.95 85.20 82.85 85.15 82.85 84.95 82.90 84.85

30 82.90 85.00 82.90 85.05 82.90 85.00 82.90 85.15

31 82.65 85.25 82.65 85.35 82.65 85.25 82.95 85.10

32 82.85 85.05 82.85 85.05 82.85 85.05 82.95 84.90

33 82.90 84.90 82.90 84.90 82.90 84.90 82.80 84.85

34 82.70 84.85 82.70 84.85 82.70 84.85 82.70 84.90

35 82.80 84.85 82.80 84.85 82.80 84.85 82.85 84.90
4



References

[1] Z. Nenadic, Information discriminant analysis: Feature extraction with an information-theoretic
objective, IEEE T. Pattern Anal., vol. 29 (8), pp. 1394-1407, 2007.

[2] M. Loog and R.P.W. Duin, Linear Dimensionality Reduction via a Heteroscedastic Extension
of LDA: The Chernoff Criterion, IEEE T. Pattern Anal., vol. 26, pp. 732-739, 2004.

5

http://cbmspc.eng.uci.edu/PUBLICATIONS/zn:07a.pdf
http://cbmspc.eng.uci.edu/PUBLICATIONS/zn:07a.pdf

	Introduction
	Example

