FACULTY COURSE ASSESSMENT REPORT

Department of Biomedical Engineering

<u>Academic Year</u>: 2011-2012 <u>Term</u>: Fall 2011

Course Code and Title: BME110A Biomechanics I

Instructor: Elliot Botvinick, PhD

Background: Please review the ABET background document.

Instructions: For each student outcome performance indicator, identify (1) the <u>assignment</u> (which quiz, quiz problem, exam problem, or project) was used to assess that indicator, (2) the <u>maximum</u> score possible on that assignment, (3) the performance <u>standard</u> for that assignment expressed in points and also as a percentage of max, (4) the number of <u>students</u> who were assessed on that assignment, (5) the <u>average</u> score achieved by them expressed in points and percentage of max, and (6) the number and percentage of BME students who <u>achieved</u> the performance standard.

Performance Indicators (PIs): This course assesses the following Performance Indicators (please consult the *Proposed Remapping of BME courses to Student Outcomes* document): **a1, a3.**

a1 — Students can apply knowledge of mathematics to problems in Biomedical Engineering

a3 — Students can apply knowledge of engineering to problems in Biomedical Engineering

Pls	Assignment	Max.	PI standard	Number	Average score	Number and %
	used for	score	and % of	0T students	and % of	of BIVIE students
	assessment		maximum	students	maximum	who met the
				lested		stanuaru
(a1)	Homework 1	20	13.33 (66.67%)	80	14.88 (74.38%)	53 (66.25%)
	Design Report 1	100	66.67 (66.67%)	80	82.88 (82.88%)	76 (95.00%)
	Homework 2	20	13.33 (66.67%)	80	14.76 (73.78%)	62 (77.50%)
	Homework 3	20	13.33 (66.67%)	80	14.74 (73.72%)	63 (78.75%)
	Midterm 1	65	43.33 (66.67%)	80	48.21 (74.17%)	60 (75.00%)
	Design Report 2	100	66.67 (66.67%)	80	95.58 (95.58%)	80 (100.00%)
	Homework 4	20	13.33 (66.67%)	80	15.96 (79.78%)	71 (88.75%)
	Midterm 2	100	66.67 (66.67%)	80	69.97 (69.97%)	44 (55.00%)
	Homework 5	20	13.33 (66.67%)	80	19.10 (95.50%)	78 (97.50%)
	Final Exam	100	66.67 (66.67%)	80	79.15 (79.15%)	68 (85.00%)
	Design Report 3	100	66.67 (66.67%)	80	86.88 (86.88%)	76 (95.00%)
	Average:				(80.52%)	66.45 (80.07%)
(a3)	Homework 1	20	13.33 (66.67%)	80	14.88 (74.38%)	53 (66.25%)
	Design Report 1	100	66.67 (66.67%)	80	82.88 (82.88%)	76 (95.00%)
	Homework 2	20	13.33 (66.67%)	80	14.76 (73.78%)	62 (77.50%)
	Homework 3	20	13.33 (66.67%)	80	14.74 (73.72%)	63 (78.75%)
	Midterm 1	65	43.33 (66.67%)	80	48.21 (74.17%)	60 (75.00%)
	Design Report 2	100	66.67 (66.67%)	80	95.58 (95.58%)	80 (100.00%)
	Homework 4	20	13.33 (66.67%)	80	15.96 (79.78%)	71 (88.75%)
	Midterm 2	100	66.67 (66.67%)	80	69.97 (69.97%)	44 (55.00%)
	Homework 5	20	13.33 (66.67%)	80	19.10 (95.50%)	78 (97.50%)
	Final Exam	100	66.67 (66.67%)	80	79.15 (79.15%)	68 (85.00%)

Design Report 3	100	66.67 (66.67%)	80	86.88 (86.88%)	76 (95.00%)
Average:				(80.52%)	66.45 (80.07%)

<u>Course Learning Outcomes</u>: This course assesses the following Course Learning Outcomes (please consult your *Course Outline* document):

CLO1: Students will be able to add, multiple forces and compute moments (EAC a)

CLO2: Students will be able to determine internal forces in a structure.(EAC a)

CLO3: Students will be able to design experiments involving single molecule statics (EAC a)

CLO4: Students will be able to compute forces within anatomical joints (EAC a)

CLOs	Assignment used for assessment	Performance standard	Number of students tested	Average score (%)	Number and % of BME students who met the standard
1	All	66.67%	80	80.52%	66.45 (80.07%)
2	All	66.67%	80	80.52%	66.45 (80.07%)
3	Design Project 3	66.67%	80	86.88%	76 (95.00%)
4	HW#5	66.67%	80	19.10%	78 (97.50%)

What changes did you make in this course based on previous assessment results?

Added the design component. The students responded positively. I added homework problems in which students analyze raw data from a single molecule biophysics experiment.

What recommendations do you have for improving the course the next time it is taught?

Restrict lectured on statics to the first three weeks

Include more continuum mechanics, with derivations of stress and strain

Cast conservation laws in terms of stress and strain to prepare students for 110C and 111

What recommendations do you have, if any, regarding prerequisite courses or other ways to improve student preparation for this course?

None

Any other recommendations or comments?

No