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Abstract— Electrocorticography has been widely explored as
a long-term signal acquisition platform for brain-computer in-
terface (BCI) control of upper extremity prostheses. However, a
comprehensive study of elementary upper extremity movements
and their relationship to electrocorticogram (ECoG) signals has
yet to be performed. This study examines whether kinematic
parameters of 6 elementary upper extremity movements can be
decoded from ECoG signals in 3 subjects undergoing subdural
electrode placement for epilepsy surgery evaluation. To this
end, we propose a 2-stage decoding approach that consists of
a state decoder to determine idle/move states, followed by a
Kalman filter-based trajectory decoder. This proposed decoder
successfully classified idle/move states with an average accuracy
of 91%, and the correlation between decoded and measured
trajectory averaged 0.70 for position and 0.68 for velocity.
These performances represent an improvement over a simple
regression-based approach.

I. INTRODUCTION

Electrocorticogram (ECoG) has been increasingly studied
as a potential signal acquisition platform for brain-computer
interface (BCI) controlled upper extremity prostheses. Suc-
cessful ECoG-based BCI systems require the ability to
robustly decode movement kinematic parameters. Examples
include the decoding of finger trajectories [1], [2], [3],
[4], [5], [6], [7], elbow and hand movements [8], [9], and
reaching directions [8], [10], [11], [12], [13].

With the exception of [2], [4], and [12], these decoders
either omitted idling periods, or were unable to accurately
predict idling periods. However, for practical BCI control,
accurate prediction of idling periods is just as important as
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the detection of movement. In addition, the performance of
many of these techniques, measured by the correlation be-
tween actual and decoded trajectories, were relatively modest
(average: 0.32–0.64). Finally, these studies only examined
limited degree-of-freedom (DOF) movements. To restore
independence to a potential user, however, a BCI-controlled
upper extremity prosthesis will require at least 6 DOFs [14].

Motivated by these shortcomings, the present study uses
a 2-stage approach for upper extremity trajectory decoding.
First, a binary decoder utilized µ, β, and γ ECoG bands
to distinguish between idling and movement states. Second,
a continuous decoder, constrained by a dynamic movement
model, was used to recover movement trajectories during
the movement states. The performance of the above method
was tested on ECoG signals underlying 6 elementary upper
extremity movements.

II. METHODS

A. Signal Acquisition and Training Data Collection

This study was approved by the Institutional Review
Boards of the University of California, Irvine and the Rancho
Los Amigos National Rehabilitation Center. Subjects were
recruited from a patient population undergoing epilepsy
surgery evaluation. Recruitment was limited to those with
standard subdural electrodes (1 cm apart) implanted over
the upper extremity representation area of the primary motor
cortex (M1). Up to 64 channels of ECoG data were recorded
with a pair of linked Nexus-32 bioamplifiers (Mind Media,
Roermond-Herten, The Netherlands), and these signals were
acquired at 2048 Hz in a common average reference mode.

Similar to [15] and [16], subjects performed 6 elementary
arm movements on the side contralateral to their ECoG
grid: 1. pincer grasp and release (PG); 2. wrist flexion and
extension (W); 3. forearm pronation and supination (PS), 4.
elbow flexion and extension (E); 5. shoulder forward flexion
and extension (SF); 6. shoulder internal and external rotation
(SR). For each movement type, the subjects performed 4 sets
of 25 continuous repetitions, with each set intervened by a
20–30 s idling period.

The trajectories of movements 1 and 2 were measured
by a custom-made electrogoniometer [17], while movements
3-6 were measured by a gyroscope (Wii Motion Plus, Nin-
tendo, Kyoto, Japan). The trajectory signals, including the
position, θ, and velocity, θ̇, were acquired using an integrated
microcontroller unit (Arduino, Smart Projects, Turin, Italy).
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Finally, the ECoG data were synchronized with the trajectory
signals using a common pulse train.

B. Decoding Model Design

For each DOF, the decoding model consisted of a state
decoder followed by a Kalman filter trajectory decoder.

1) State Decoder: ECoG signals were divided into con-
secutive non-overlapping 0.25 s windows. The logarithmic
spectral powers were calculated for each window in the
following bands: µ (8-12 Hz), β (13-30 Hz), low-γ (30-
50 Hz), and high-γ (80-160 Hz). Taking the logarithm of
the powers equalized the otherwise disparate power levels,
especially between the µ and high γ bands. This avoided
skewing the parameters of the state decoder.

The spectral powers were classified into idling and move-
ment states by first performing feature extraction using
a combination of classwise principal component analysis
(CPCA) [18], [19] and approximate information discriminant
analysis (AIDA) [20]. One-dimensional (1D) spatio-spectral
features were extracted by:

f = TAΦC(d) (1)

where f ∈ R is the feature, d ∈ Rb×c are single-trial spatio-
spectral ECoG data (b- the number of frequency bands, c-
the number of channels), ΦC : Rb×c → Rm is a piecewise
linear mapping from the data space into the m-dimensional
CPCA-subspace, and TA ∈ R1×m is an AIDA transformation
matrix. Then, a linear Bayesian classifier:

f⋆ ∈

{
I, if P (I |f⋆) > P (M|f⋆)

M, otherwise
(2)

was designed in the feature domain, where P (I |f⋆) and
P (M|f⋆) are the posterior probabilities of idling and move-
ment classes, respectively, given the observed feature, f⋆.
This entire procedure was performed for each movement,
and the classified idle and movement state trajectories were
estimated using the following trajectory decoder.

2) Kalman Filter-Based Trajectory Decoder: High-γ
power envelopes, P , were derived from ECoG signals ac-
cording to [16]. Briefly, ECoG were band-pass filtered (80-
160 Hz), their instantaneous powers were calculated by
squaring the signals, and the results were enveloped using a
0.5-sec Gaussian window. P was then used as the observation
in the dynamic model below.

To facilitate Kalman filter development, the following
dynamic model is assumed:

xk+1 = Axk + wk

yk = Cxk + nk

(3)

where xk ∈ R2×1 is the state consisting of the angular
position, θ, and velocity, θ̇, k is the current time step,
A ∈ R2×2 is the state matrix, and wk ∼ N (0,Σw) is zero-
mean Gaussian process noise with covariance Σw. Similarly,
yk ∈ Rc×1 is the output (note that yk = Pk), C ∈ Rc×2 is the
output matrix, and nk ∼ N (0,Σn) is zero-mean Gaussian

measurement noise with covariance Σn. Both A and C are
computed from the data according to [21]. The Kalman filter
was then constructed to compute the position and velocity at
the next time step [21]:

Σk+1=[I − Lk+1C]
[
AΣkA

T +Σw

]
Lk+1=

[
AΣkA

T +Σw

]
CT [C [

AΣkA
T +Σw

]
CT +Σn

]−1

where Σ is the a posteriori error covariance and L is the
optimal gain.

C. Performance Measure

The data were split into two halves, with one half used for
training the state and trajectory decoders, and the other half
used for validation. The above process was then repeated
with the roles of the training and validation sets reversed.
The decoder performance was assessed by comparing the
reconstructed trajectories (θ̂, ˆ̇

θ) to the trajectories measured
by the electrogoniometer or gyroscope (θ, θ̇). To this end,
the fraction of correctly decoded idle and movement states,
Pc, and the correlation coefficient of movement, ρM , were
calculated. In addition, to judge the overall performance with
a single number, the following Performance Measure, PM,
was used:

PM =
ρMnM + P (I|I)nI

nM + nI
× 100% (4)

where nM and nI is the number of movement and idle
state samples, respectively, and P (I|I) is the probability of
correctly decoding the idling state.

III. RESULTS

Three subjects were recruited for the study. Their de-
mographics and ECoG electrode locations are summarized
in Table I. A representative ECoG electrode location map
can be seen in Fig. 1. The probability of correct state
decoding, Pc, movement correlation coefficients, ρM , and
performance measures, PM, for position, θ, and velocity,
θ̇, are summarized in Table II. It can be seen in Table II
that there are two numbers for each measure, one for each
validation set. Note that the probability of correct state
decoding, Pc, is the same for both position and velocity since
it was determined from the same state decoder.

TABLE I
SUBJECT DEMOGRAPHICS AND GRID LOCATION/SIZE.

Subject Sex Age Grid Size Grid Location

1 F 20 8×8 grid,
1×6 strip

Left temporal-frontal,
Posterior-frontal

2 F 27 6×8 grid Right frontal-parietal
3 F 35 2×6 strip Right frontal-parietal

The representative trajectory decoding results for the pin-
cer grasp movement of Subject 3 are shown in Fig. 2. Note
that for the periods classified as idle, the position was held
constant, while the decoded velocity was set to 0.
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Fig. 2. Representative ECoG-decoded (red thin line) and measured (gray thick line) velocities during pincer grasping for Subject 3.

Fig. 1. Representative electrode grid placement (Subject 1).

TABLE II
TRAJECTORY DECODING RESULTS FOR EACH SUBJECT S: MOVEMENTS,

M; PROBABILITY OF CORRECT STATE DECODING, Pc ; CORRELATION

COEFFICIENT OF MOVEMENT, ρM ; AND PERFORMANCE MEASURE, PM.

S M Pc (%) ρM PM ρM PM
Pos. Pos. (%) Vel. Vel. (%)

1 PG 79, 95 0.40, 0.39 71, 64 0.29, 0.49 66, 69
W 90, 98 0.71, 0.69 76, 78 0.68, 0.67 75, 77

2 PG 90, 81 0.78, 0.56 76, 71 0.76, 0.55 75, 71
E 90, 85 0.71, 0.66 68, 77 0.68, 0.67 65, 77
SR 93, 96 0.76, 0.86 78, 89 0.74, 0.84 76, 88
SF 96, 89 0.82, 0.70 85, 80 0.81, 0.72 84, 82

3 PG 91, 98 0.86, 0.83 86, 91 0.80, 0.76 83, 87

Avg. 90, 92 0.72, 0.67 77, 79 0.68, 0.67 75, 79

To gauge the performance of these results, they were
compared to our previously reported regression-based ap-
proach [16]. Briefly, this approach used a linear regression
model between the instantaneous power in the high γ band
and the known velocity to classify idle and movement states.
Similar to the present approach, the velocity during states
decoded as idling was set to 0. Conversely, the velocity
during states decoded as movement was estimated using a 2nd

linear regression model. These prior results are reproduced
in Table III for comparison purposes. Note that since the
regression-based approach was only applied to the velocity
decoding [16], the decoded positions are not reported.

TABLE III
THE PROBABILITY OF CORRECT STATE DECODING, Pc , AND THE

CORRELATION COEFFICIENT, ρM , BETWEEN ACTUAL AND DECODED

MOVEMENT VELOCITY USING THE REGRESSION-BASED APPROACH [16].

S M Pc (%) ρM

1 PG 81, 85 0.66, 0.68
W 83, 89 0.52, 0.46

2 PG 89, 73 0.62, 0.54
E 80, 80 0.53, 0.44
SR 80, 68 0.53, 0.62
SF 87, 82 0.69, 0.53

3 PG 88, 89 0.80, 0.76

Avg. 84, 81 0.60, 0.56

IV. DISCUSSION

With the exception of the pronation/supination movement,
this study demonstrates that movements of multiple upper
extremity joints can be decoded from ECoG signals with
a reasonably high accuracy. The state decoder classified
idle and movement states with a high probability (average
∼91%). A notable exception to this is the PG movement
in Subject 1, where a relative drop in decoding performance
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was observed. Also, the proposed state decoder outperformed
the regression-based approach by a wide margin (average
∼83%). Since the regression-based approach only utilizes
the high-γ band, these results also suggest that significant
information about the movement state can be gleaned from
the µ, β and low-γ bands.

The position and velocity of upper extremity movements
were accurately decoded by the Kalman filter, as evidenced
by the average correlation of 0.70 (position) and 0.68 (veloc-
ity). This represents a significant improvement with respect
to velocity decoding using the simple linear regression ap-
proach (average ρM = 0.58). These results are not surpris-
ing given that the dynamic model (3) imposes smoothness
constraints on the decoded trajectories, ultimately resulting
in a higher decoding accuracy. Note that both the Kalman
filter and the linear regression-based trajectory decoder only
utilized the high-γ band, and that the addition of other
frequencies generally degraded the performance.

Despite these relatively accurate results, there are several
instances when the decoded trajectory overshoots the mea-
sured trajectory. This may be problematic when developing
a BCI-driven upper extremity prosthesis, as the prosthesis
itself will have physical constraints. The overshoot could be
mitigated by imposing boundary conditions that conform to
the physical constraints of the prosthesis.

In summary, the relatively high state and trajectory de-
coding accuracies resulted in average performance measures
of 78% (position) and 77% (velocity). Additionally, the
approach here was successfully applied to multiple DOFs
of the upper extremities, especially in the case of Subject 2
(4 out of 6). The ability to decode multiple DOF movements
was largely determined by the grid placement, which also
explains why Subject 1 and Subject 3 had only 2 and 1 DOF
movements decoded, respectively. Furthermore, the present
study only examined the decoding of one DOF movement
at a time. Our prior work indicates that resolving movement
states of multiple joints may be challenging [15], as sensitiv-
ity (idling vs. moving) and specificity (which joint is moving)
are generally traded off. It therefore remains unclear to
what degree this is true of trajectory decoding. Nevertheless,
the preliminary success reported here warrants additional
investigation, possibly with higher resolution signals, such
as mini- or micro-ECoG grids.

V. CONCLUSION

The findings here suggest that the power of the ECoG
high-γ band can be used to accurately decode both the state
and trajectory information from ECoG signals for several
individual movement types. The ability to accurately decode
these movements may lead to BCI control of a 6 DOF upper
extremity prosthesis, however, additional research must be
performed to resolve the individual movements and facilitate
proper BCI-control of an upper extremity prosthesis.
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