The input arguments represent:
In case you care, here is the function test_satellite.m posted. Note that the function is specifically tailored to Satellite data. Also note that it is assumed that a file Satimage.mat resides in the same directory as test_satellite.m. This file should contain a variable Data in the form of 6435 x 37 matrix. The last column of this matrix contains class label indicators (integers), e.g. {0, 1 ... , 5}. Type help test_satellite or take a look at the source code for further information on this function. Final note: running test_satellite.m will call classify.m which is a function from MATLABTMStatistics Toolbox. If the toolbox is not installed, these functions (linear and quadratic classifier) can be easily written.
![]() |
Fig. 1 shows the resulting 2-D feature plot. The
performances (percent correct) of the linear and quadratic classifiers are
65.90% and 72.45%, respectively. Table 1 shows results
for various dimensions of the feature space. IDA is initialized with two
methods: LDA and CHE (Chernoff method of Loog and
Duin [2]). For m > 5, LDA does not yield a feature extraction
matrix, therefore a random matrix was used instead. These results are
separated from LDA-initialized results by a horizonal line (see
Table 1). The boxed values represent the best results for each
classifier-method combination.
m | IDA, (10,`che','tr') | IDA, (10,`lda','tr') | IDA, (10,`lda','cg') | CHE | LDA | |||||
(L) | (Q) | (L) | (Q) | (L) | (Q) | (L) | (Q) | (L) | (Q) | |
1 | 59.20 | 67.30 | 59.20 | 67.30 | 59.20 | 67.30 | 71.45 | 73.45 | 52.35 | 56.50 |
2 | 65.90 | 72.45 | 65.90 | 72.45 | 65.90 | 72.45 | 80.75 | 81.10 | 75.95 | 78.35 |
3 | 82.15 | 84.75 | 82.15 | 84.75 | 82.15 | 84.75 | 82.00 | 84.55 | 82.30 | 84.10 |
4 | 82.30 | 85.20 | 82.30 | 85.15 | 82.30 | 85.15 | 82.20 | 84.25 | 82.75 |
![]() |
5 | 82.25 | 83.65 | 82.25 | 83.65 | 82.25 | 83.65 | 82.25 | 84.10 |
![]() |
84.50 |
6 | 81.80 | 83.40 | 81.65 | 83.25 | 81.80 | 83.40 | 82.05 | 83.50 | ||
7 | 82.00 | 84.15 | 81.65 | 84.20 | 81.65 | 84.15 | 82.45 | 84.25 | ||
8 | 82.30 | 83.85 | 81.55 | 83.60 | 81.80 | 84.60 | 82.55 | 84.00 | ||
9 | 82.65 | 84.20 | 82.15 | 84.15 | 82.25 | 84.15 | 82.70 | 84.05 | ||
10 | 82.75 | 84.15 | 82.50 | 84.25 | 82.60 | 84.50 | 82.95 | 84.35 | ||
11 | 82.85 | 83.75 | 82.15 | 84.10 | 82.55 | 83.95 | 82.75 | 84.30 | ||
12 | 82.80 | 83.95 | 82.65 | 84.25 | 82.40 | 84.30 | 83.00 | 84.50 | ||
13 | 82.75 | 84.10 | 82.55 | 84.35 | 82.60 | 84.75 | 82.80 | 84.35 | ||
14 | 82.80 | 83.95 | 82.70 | 84.55 | 82.75 | 84.45 | 82.75 | 84.60 | ||
15 | 82.80 | 84.50 | 82.50 | 84.85 | 82.80 | 84.35 | 82.80 | 84.90 | ||
16 | 82.85 | 84.50 | 82.40 | 84.95 | 82.90 | 84.50 | 82.75 | 84.55 | ||
17 | 83.10 | 84.70 | 83.05 | 84.65 | 83.10 | 84.70 | 82.90 | 84.85 | ||
18 | 83.20 | 84.95 | 83.05 | 84.85 | 83.20 | 84.95 | 83.00 | 85.15 | ||
19 |
![]() |
85.10 |
![]() |
85.05 |
![]() |
85.10 | 83.00 | 85.10 | ||
20 | 83.10 | 84.95 | 82.90 | 84.95 | 82.85 | 85.00 | 82.85 |
![]() |
||
21 | 82.85 | 85.10 | 82.90 | 85.15 | 82.85 | 85.10 | 82.65 | 84.95 | ||
22 | 83.00 | 85.20 | 82.75 | 85.20 | 83.00 | 85.20 | 82.75 | 85.05 | ||
23 | 83.05 | 85.00 | 83.05 | 85.15 | 83.05 | 85.00 | 82.85 | 85.05 | ||
24 | 82.95 | 85.00 | 82.75 | 84.95 | 82.95 | 85.00 | 82.75 | 84.90 | ||
25 | 82.75 | 84.85 | 82.90 | 85.00 | 82.75 | 84.85 | 82.80 | 84.95 | ||
26 | 82.90 | 84.70 | 82.90 | 84.65 | 82.90 | 84.65 | 82.80 | 84.90 | ||
27 | 82.85 | 84.75 | 83.00 | 85.00 | 83.10 | 84.95 |
![]() |
84.85 | ||
28 | 82.80 | 85.00 | 82.90 | 84.95 | 82.80 | 85.00 | 82.80 | 84.80 | ||
29 | 82.95 | 85.20 | 82.85 | 85.15 | 82.85 | 84.95 | 82.90 | 84.85 | ||
30 | 82.90 | 85.00 | 82.90 | 85.05 | 82.90 | 85.00 | 82.90 | 85.15 | ||
31 | 82.65 |
![]() |
82.65 |
![]() |
82.65 |
![]() |
82.95 | 85.10 | ||
32 | 82.85 | 85.05 | 82.85 | 85.05 | 82.85 | 85.05 | 82.95 | 84.90 | ||
33 | 82.90 | 84.90 | 82.90 | 84.90 | 82.90 | 84.90 | 82.80 | 84.85 | ||
34 | 82.70 | 84.85 | 82.70 | 84.85 | 82.70 | 84.85 | 82.70 | 84.90 | ||
35 | 82.80 | 84.85 | 82.80 | 84.85 | 82.80 | 84.85 | 82.85 | 84.90 |